
```

Isabella Vieira Ferreira

Assessing the Bug-Proneness of Refactored
Code: Longitudinal Multi-Project Studies

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em
Informática da PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática.

Advisor: Prof. Alessandro Fabricio Garcia

Rio de Janeiro
July 2018

Isabella Vieira


DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Isabella Vieira Ferreira

Assessing the Bug-Proneness of Refactored
Code: Longitudinal Multi-Project Studies

Dissertation presented to the Programa de Pós–graduação em
Informática da PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática. Approved by the
undersigned Examination Committee.

Prof. Alessandro Fabricio Garcia
Advisor

Departamento de Informática – PUC-Rio

Prof. Marcos Kalinowski
Departamento de Informática – PUC-Rio

Prof. Leonardo Gresta Paulino Murta
Universidade Federal Fluminense – UFF

Prof. Márcio da Silveira Carvalho
Vice Dean of Graduate Studies

Centro Técnico Científico – PUC-Rio

Rio de Janeiro, July 16th, 2018

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



All rights reserved.

Isabella Vieira Ferreira
Isabella Vieira Ferreira joined PUC-Rio in 2016 as a Mas-
ter student in Software Engineering in the Informatics De-
partment. Isabella obtained a BSc. Degree in Computer Sci-
ence (2016) from the Federal University of São João del-
Rei (UFSJ). During her undergraduate degree, she did an
exchange program (2013-2014) at the University of Ottawa
(uOttawa) - Canada. Her main research interests are refacto-
rings, bugs, code smells, and software maintenance and evo-
lution.

Bibliographic data
Vieira Ferreira, Isabella

Assessing the Bug-Proneness of Refactored Code: Lon-
gitudinal Multi-Project Studies / Isabella Vieira Ferreira; ad-
visor: Alessandro Fabricio Garcia. – Rio de janeiro: PUC-Rio,
Departamento de Informática, 2018.

v., 90 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Degradação Estrutural do Código-Fonte;. 2. Refatora-
ção;. 3. Propensão a Bugs;. 4. Manutenção de Software;.
5. Estudo Empírico.. I. Garcia, Alessandro. II. Pontifícia Uni-
versidade Católica do Rio de Janeiro. Departamento de Infor-
mática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Acknowledgments

First and foremost, I would like to thank the almighty God for giving
me strength, knowledge, and courage to move on. Without his blessings, this
achievement would not have been possible.

My deepest gratitude goes to my whole family: my father Luciano
Ferreira, my mother Carla M. B. V. Ferreira, and my sister Ana Clara V.
Ferreira. Thanks for giving me the best opportunities, for never letting me
give up, for believing in my dreams, and for supporting me in both sunny and
stormy days. Without my family, I would not have come this far.

I would like to thank my beloved boyfriend, Marcos Paulo C. Rocha,
for providing me with unfailing support and continuous encouragement th-
roughout. Without him, this accomplishment would not have been possible.

A very special gratitude goes to my advisor Alessandro Garcia. I would
like to thank professor Alessandro for encouraging me through hard times,
for his invaluable advice for both my research and my career, and for giving
me innumerable opportunities. His energy and excitement about what he does
motivate me.

My sincere thanks also go to the members of my thesis defense, Leonardo
Murta, and Marcos Kalinowski. I would like to thank all professors from PUC-
Rio for their contribution to my education. I am also very grateful for the
opportunity to work at Apple Developer Academy - PUC-Rio. My sincere
thanks to all my mentors and colleagues.

I extend my gratitude to my colleagues and friends from the OPUS
Research Group. In particular, I would like to thank Diego Cedrim, Eduardo
Fernandes, Leonardo Sousa, and Roberto Oliveira for all giving support and
fellowship. A special thanks to my new friends Anderson Oliveira, Anderson
Uchôa, Alexander López, Ana Carla Bibiano, Anne Benedicte Agbachi, Rafael
de Mello, and Willian Oizumi.

I am very grateful for the collaboration made with the Federal University
of Alagoas (UFAL). A special thanks to Baldoino Fonseca, Caio Barbosa,
Daniel Tenório, Filipe Santos, Gabriel Nunes, Henrique Alves, João Lucas
Correia, and Marcus Piancó.

Finally, I gratefully acknowledge the National Council for Scientific and
Technological Development (CNPq), and PUC–Rio for the financial support.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Abstract

Vieira Ferreira, Isabella; Garcia, Alessandro (Advisor). Asses-
sing the Bug-Proneness of Refactored Code: Longitudinal
Multi-Project Studies. Rio de Janeiro, 2018. 90p. Dissertação de
mestrado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

Programs often change along the system evolution, which implies an even-
tual code structure degradation. Recurring symptoms of such degradation
are code smells. Studies suggest that the more frequently code smells af-
fect a system, the higher becomes the bug-proneness of the code elements.
To tackle code structural quality degradation, developers often apply refac-
torings on smelly program elements. However, applying refactorings might
not suffice to reduce the bug-proneness of such degraded program elements.
Previous empirical studies do not systematically analyze the bug-proneness
of refactored code. Even though a recent study suggests that refactoring in-
duces bugs frequently, the authors do not analyze to what extent refactored
code is indeed closely related to the bug occurrence. Thus, in this disserta-
tion, we conducted two longitudinal multi-project studies to assess the bug-
proneness of refactored code. Our methodology aimed to address various
limitations of previous studies. For instance, we have defined two comple-
mentary properties of the bug-proneness of refactored code, i.e., frequency
and distance. While the former quantifies how often a refactored code is re-
lated to emerging bugs, the latter quantifies how close a bug emerges after
a refactoring has been applied. The quantitative analysis of such properties
was complemented by a manual analysis of refactorings closely related to
the bug occurrence. Our first study aims at assessing the bug-proneness
of code refactored through isolated refactorings, i.e., a single refactoring
operation not performed in conjunction with other refactoring operations.
This study reveals that 80% of the smelly elements that became buggy were
not previously refactored. This result suggests the refactored code is much
less bug-prone than non-refactored code. Moreover, in 75% of the times, a
bug emerges in 7 changes far from the refactoring operation; this amount
of changes usually corresponds to 3 months in the analyzed projects. Our
second study aims at assessing the bug-proneness of code elements refacto-
red through batch refactorings, i.e., a sequence of inter-related refactoring
operations. Our results show that code refactored through batches is often
more resilient to the introduction of bugs as compared to code refactored
through isolated refactorings.
Keywords

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Code Degradation; Code Refactoring; Bug-Proneness; Software
Maintenance; Empirical Study.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Resumo

Vieira Ferreira, Isabella; Garcia, Alessandro. Avaliando a Pro-
pensão a Bugs do Código Refatorado: Estudos Longitu-
dinais Multiprojetos. Rio de Janeiro, 2018. 90p. Dissertação de
Mestrado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

Os elementos de código geralmente mudam ao longo da evolução do sistema,
o que implica em uma eventual degradação estrutural do código fonte. Sin-
tomas recorrentes de tal degradação são chamados anomalias de código.
Estudos sugerem que quanto mais anomalias de código afetam um sistema,
mais alta se torna a propensão a bugs dos elementos de código. Para li-
dar com tal degradação da qualidade estrutural do código, desenvolvedores
geralmente aplicam refatorações no código fonte. No entanto, aplicar refato-
rações pode não ser suficiente para reduzir a propensão a bugs dos elementos
de código degradados. Um estudo recente sugere que refatorações induzem
bugs frequentemente. No entanto, os autores não analisam se o código re-
fatorado está, de fato, diretamente relacionado à introdução de bugs. Com
isso, nesta dissertação, realizamos dois estudos longitudinais de múltiplos
projetos para avaliar a propensão a bugs do código refatorado. Nossa meto-
dologia teve como objetivo abordar várias limitações de estudos anteriores.
Por exemplo, definimos duas propriedades complementares da propensão
a bugs do código refatorado, sendo elas, frequência e distância. Enquanto
a primeira propriedade quantifica a frequência com que um código refato-
rado está relacionado a bugs que emergiram no código fonte, a distância
quantifica o quão próximo um bug surge depois que uma refatoração é apli-
cada. Nosso primeiro estudo tem como objetivo avaliar a propensão a bugs
de refatorações isoladas. Primeiro, nossos resultados mostram que 80% dos
elementos degradados que se tornaram bugs não foram previamente refato-
rados. Este resultado implica que um código refatorado é menos propenso
a bugs do que um código não refatorado. Em segundo lugar, em 75% das
vezes um bug surge depois de 7 mudanças feitas a partir da operação de
refatoração, o que geralmente corresponde à 3 meses nos projetos analisa-
dos. Nosso segundo estudo tem como objetivo avaliar a propensão a bugs de
refatorações em lote, ou seja, refatorações aplicadas em sequência. Nossos
resultados mostram que, na maioria dos casos, o código refatorado em lotes
é mais resiliente à introdução de bugs do que o código refatorado por meio
de refatorações isoladas.

Palavras-chave

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Degradação Estrutural do Código-Fonte; Refatoração; Propensão a
Bugs; Manutenção de Software; Estudo Empírico.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Table of contents

1 Introduction 14
1.1 The Bug-Proneness of Refactored Code: A Motivating Example 15
1.2 Problem Statement 17
1.3 Studies on Refactorings and Bugs 18
1.4 Proposed Approach and Evaluation 19
1.4.1 The Bug-Proneness of Code Refactored through Isolated Refactoring 21
1.4.2 The Bug-Proneness of Code Refactored through Batch Refactoring 23
1.5 Contributions 24
1.6 Dissertation Outline 25

2 Background and Related Work 26
2.1 Basic Concepts 27
2.1.1 Code Degradation and Code Refactoring 27
2.1.2 Bugs and Bug-Proneness of Refactored Code 28
2.2 Literature Review 31
2.2.1 Studies on Code Degradation and Bugs 31
2.2.2 Studies on Refactorings and Bugs 32
2.3 Final Remarks 34

3 Research Methodology 35
3.1 Research Goal 35
3.2 Software Projects Selection 36
3.3 Code Smell Detection 37
3.4 Refactoring Detection and Manual Validation 38
3.5 Bug Detection and Manual Validation 40
3.6 Bug-Fix Commit and Bug-Fix Elements Detection 42
3.7 Bug-Introducing Commit Detection 42
3.8 Changes Detection 43
3.9 Final Remarks 43

4 The Bug-Proneness of Code Refactored through Isolated Refactoring 44
4.1 Study Settings and Procedures 44
4.1.1 Research Questions 45
4.1.2 Identification of Isolated Refactorings 48
4.1.3 Manual Classification of Refactoring Tactics 48
4.1.4 Measuring the Properties of the Bug-Proneness of Refactored Code 49
4.1.4.1 Measuring the Frequency Property 49
4.1.4.2 Measuring the Distance Property 50
4.1.5 Manual Validation of the Distance Results 51
4.2 The Bug-Proneness of Code Refactored through Isolated Refactorings 51
4.2.1 Frequency of Isolated Refactorings Performed in Code Elements that

Are Bug-Prone 51
4.2.2 Bug-Proneness of Refactored Code versus Non-Refactored Code 54
4.2.3 Distance Between the Refactoring and the Bug 57

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



4.2.4 Bug-Proneness According to Refactoring Types 59
4.2.5 Bug-Proneness According to Refactoring Tactics 61
4.3 Threats to Validity 63
4.4 Final Remarks 64

5 The Bug-Proneness of Code Refactored through Batch Refactoring
66

5.1 Study Settings and Procedures 67
5.1.1 Research Questions 67
5.1.2 Identification of Batch Refactorings 69
5.1.3 Measuring the Properties of the Bug-Proneness of Refactored Code 70
5.1.4 Measuring the Frequency Property 70
5.1.5 Measuring the Distance Property 71
5.2 The Bug-Proneness of Code Refactored through Batch Refactoring 71
5.2.1 Frequency of Batch Refactorings Performed in Code Elements that

Are Bug-Prone 71
5.2.2 Bug-Proneness of Refactored Code versus Non-Refactored Code 73
5.2.3 Distance Between the Refactoring and the Bug 75
5.3 Threats to Validity 77
5.4 Final Remarks 78

6 Conclusion and Future Work 80

Bibliography 84

A Published Papers 90

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



List of figures

Figure 1.1 Motivating example 16

Figure 2.1 Batch refactoring example 29

Figure 3.1 Study Phases 37

Figure 4.1 Evaluation of the bug-proneness of code refactored
through isolated refactorings 49

Figure 4.2 Frequency of isolated refactorings according to the struc-
ture degradation of the code elements touched by these refac-
torings 53

Figure 4.3 Frequency of the bug-proneness of refactored code vs.
non-refactored code for isolated refactorings 56

Figure 4.4 Distance of the most frequent refactoring types related
to bugs 60

Figure 5.1 Evaluation of the bug-proneness of code refactored
through batch refactoring 70

Figure 5.2 Frequency of the bug-proneness of refactored code vs.
non-refactored code (batch refactorings) 74

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



List of tables

Table 1.1 List of specific research questions for the first study 21
Table 1.2 List of specific research questions for the second study 23

Table 2.1 Overview of previous studies versus our study 34

Table 3.1 General data of the analyzed software projects 38
Table 3.2 Analyzed Smell Types 39
Table 3.3 Analyzed Refactoring Types 40
Table 3.4 Refactored Elements 41
Table 3.5 Bug Patterns of FindBugs 42

Table 4.1 Study hypotheses derived from SRQ2 46
Table 4.2 Study hypotheses derived from SRQ3 47
Table 4.3 Study hypotheses derived from SRQ5 48
Table 4.4 Frequency of isolated refactorings performed in code

elements that are bug-prone per software project 52
Table 4.5 Frequency of the bug-proneness of refactored code vs. non

refactored code per software project (isolated refactorings) 55
Table 4.6 Bug-proneness in distance for isolated refactorings con-

sidering bug reports 57
Table 4.7 Bug-proneness in distance for isolated refactorings con-

sidering bugs collected via static analysis 58
Table 4.8 Frequency of each refactoring type 60
Table 4.9 Bug-proneness of code refactored through root-canal

refactoring 62
Table 4.10 Bug-proneness of code refactored through floss refactoring 62

Table 5.1 Study hypotheses derived from SRQ7 68
Table 5.2 Study hypotheses derived from SRQ8 68
Table 5.3 Frequency of bug-prone batch refactorings 72
Table 5.4 Frequency of the bug-proneness of refactored code vs. non

refactored code per software project (batch refactorings) 74
Table 5.5 Bug-proneness in distance for batch refactorings 76

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Sapere aude

Horace, Epistularum liber primus.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



1
Introduction

Software maintenance requires the application of various changes to the
source code. Undisciplined changes often lead to the degradation of the code
structure quality (46, 50). Such degradation potentially hinders the software
maintainability. One way to observe the code structure degradation is through
code smells, which are microstructures in the program that represent symptoms
of a structural problem. To address these symptoms, developers often apply
code refactorings (6, 19). Code refactoring is a program transformation used
for improving the structure of a program while preserving its observable
behavior (19). Examples of commonly applied refactoring types include Extract
Method, Inline Method, and Move Method (18).

Code refactoring is quite complex in practice. First, developers apply
refactoring with different purposes (33, 34), such as reducing maintenance
effort, facilitating feature additions, improving program testability, or even
supporting bug fixes (33, 34, 35). Second, refactoring is very challenging (40,
57). That is, it is hard to perform refactoring on large code bases, which usually
have many inter-component dependencies (40). Third, developers think that
it is difficult to ensure program correctness after refactoring (40). In a study
conducted at Microsoft, 76% of developers mentioned that refactoring comes
with a risk of introducing bugs and functionality regression. Third, refactoring
is applied with two significantly different tactics, namely root-canal refactoring
and floss refactoring (18, 56). Developers apply root-canal refactoring when
they aim to exclusively improve the code structure quality. On the contrary,
developers apply floss refactoring when they aim to refactor the code together
with non-structural changes as a means to reach other goals, such as adding
features or fixing bugs.

Given the complexity of refactoring in practice, its application can impact
positively or negatively on the bug-proneness of refactored code elements. Bug-
proneness is the susceptibility of a code element containing a bug. A code
element is buggy when it indeed contains a bug. A bug consists of a mistake
made by the developer during the software development and maintenance,
which violates the expected behavior of the software system (42, 58, 59). Then,
every change in the program, including a refactoring operation, may induce the

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 1. Introduction 15

introduction of bugs in the modified code elements.
Hence, a refactored code element is bug-prone if it is susceptible to con-

tain bugs after being refactored. In the case that the refactored code indeed
contains a bug, we say that the code element became buggy. The susceptibility
of a refactored code element may depend on particular characteristics observed
on it. For instance, one could argue that some refactoring types make the refac-
tored code element more bug-prone than other refactoring types. Additionally,
depending on the refactoring tactic applied by the developer, the refactored
code is more susceptible to contain bugs.

Unfortunately, the bug-proneness of refactored code is barely investigated
in-depth. Only a few studies (1, 3) analyze the bug-proneness of refactored
code. They provide evidence that refactored code is often susceptible to contain
bugs. However, the provided evidence is not sufficient to blame refactorings
for bugs. After analyzing their results, more relevant questions about the
bug-proneness of refactored code still arise. For instance, it is unknown how
long it takes to the refactored code element become buggy, and what are the
characteristics of the bug-proneness of refactored code. With that in mind, we
claim that it is necessary a more fine-grained and systematic analysis to better
assess the bug-proneness of refactored code. Consequently, we will be able to
confirm or refute if refactoring can actually be blamed for bugs, as previous
studies suggest (1, 3).

1.1
The Bug-Proneness of Refactored Code: A Motivating Example

We motivate our study by illustrating to what extent refactored code
could be bug-prone, as previous studies suggest (1, 3). This example is taken
from the Spring Boot1 project at GitHub. To provide this example, first,
we analyzed the bug report #51032 entitled command line args are not sent
to parent SpringApplicationBuilder.configureAsChildIfNecessary in 1.3.2. The
description of the aforementioned bug report mentions that after upgrading
Spring Boot from version 1.2.6 to 1.3.2, the configuration file is not loaded.
The person who reported this bug suggested a way to fix it. That is, in
version 1.3.2, there is a method called configureAsChildIfNecessary that
calls ParentContextApplicationContextInitializer without passing the
command line arguments. Thus, the solution would be to send the arguments
to configureAsChildIfNecessary, and to SpringApplicationBuilder.run
to bring back the behavior of version 1.2.6.

1Available at https://github.com/spring-projects/spring-boot.git
2Available at https://github.com/spring-projects/spring-boot/issues/5103

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 1. Introduction 16

After understanding the reported bug, we identified the code elements
involved with the fix of this bug. Then, we verified if these code elements
had been refactored before the bug was reported. In this case, an Extract
Method refactoring type was applied to the code element. This refactoring
type is often applied when part of the code should be gathered in a single
method (19). To solve this problem, developers create a new method with the
extracted code (19). Figure 1.1 presents the source code before and after the
refactoring. In this case, the developer extracted part of the build method
(without any parameter) to another build method that receives the command
line arguments as a parameter. The developer created the method build with
different signatures to preserve backward compatibility of Spring Boot.

Figure 1.1: Motivating example

In the example presented above, we can see that a floss refactoring was
applied. In other words, the developer applied the Extract Method refactoring
type for the purpose of fixing the bug described in the bug report identified
as #5103. The analysis performed by previous studies (1, 3) is limited to
assess whether a refactored code has a bug after being refactored. As a result,
previous studies would conclude that refactored code is susceptible to contain
bugs. However, as aforementioned, the refactoring was made to fix the bug.
Therefore, the refactoring cannot be blamed for the bug.

Given the above circumstances, we claim that a more fine-grained and

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 1. Introduction 17

systematic analysis to better assess the bug-proneness of refactored code should
be proposed. That is, one could say that if we measure how close or how far a
refactored code element becomes buggy, we would have an insight of whether
the refactored code is indeed bug-prone. In the case of the example presented
above, as the bug was too close from the refactoring, one could argue that
the refactoring either made the code element bug-prone or the refactoring was
performed as a means to fix the bug. For that, only a manual analysis of the
cases in which the refactoring is very close to the bug would actually give us
an insight of whether the refactored code is bug-prone or not. As a result, we
would see if refactoring can actually be blamed for bugs as previous studies
suggest (1, 3). Furthermore, analyzing the bug-proneness of code elements
refactored by different tactics would give us a better understanding of the
bug-proneness of refactored code.

1.2
Problem Statement

There is an explicit assumption that code refactoring improves the
structural quality of a program, thereby reducing the susceptibility of bugs
in refactored code elements. However, this assumption might not always hold.
Developers might unconsciously make the source code more susceptible to
contain bugs depending on the complexity of certain refactorings. Kim et
al. (40) found that there is no safe way of checking refactoring correctness,
mainly when a regression test suit is insufficient. As a result, regression
bugs might be introduced to the source code. Consequently, developers prefer
to avoid refactoring the source code as a means to do not unintentionally
introduce bugs (40). Furthermore, developers feel discouraged from applying
refactorings due to the challenge of maintaining backward compatibility (40).
Moreover, one could expect that when developers apply root-canal refactoring,
i.e., when developers are intended at improving the code structure quality,
the refactored code element is less susceptible to contain bugs than when
developers apply floss refactoring. In the example presented in Section 1.1, the
developer performed a floss refactoring to fix the bug. Furthermore, besides
refactoring the source code to fix the bug, the developer was concerned about
maintaining backward compatibility of Spring Boot. Thus, one could argue
that a bug could have been introduced when the developer was performing
such refactoring.

Unfortunately, there is limited understanding about the bug-proneness of
refactored code. Existing studies (1, 3) provide evidence that refactored code is
often susceptible to contain bugs. However, none of the existing studies (1, 3)

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 1. Introduction 18

analyze the characteristics of refactorings that are bug-prone. For instance,
in the example presented in Section 1.1, the floss refactoring performed by
the developer could have made the code element bug-prone if compared
to when the developer applies a root-canal refactoring. Furthermore, some
refactoring types might be more complex than others, therefore, increasing
the susceptibility of bugs in the refactored code. The lack of knowledge about
the characteristics of refactorings that make code elements bug-prone prevent
researchers and practitioners from having better practices when applying
refactorings. The general problem is described as follows.

General Problem. The characteristics of refactorings that make refac-
tored code elements bug-prone remain unknown.

1.3
Studies on Refactorings and Bugs

Only a few studies have investigated the bug-proneness of refactored
code (1, 3). Bavota et al. (1) analyze if refactoring induces bugs. In other
words, the authors analyze if refactored code elements contain a bug in
further commits. They focus on analyzing: (i) the percentage of refactored
code elements that become buggy, and (ii) the refactoring types that are
more likely to make the refactored code bug-prone. Their results show that
refactored code is often bug-prone. Furthermore, they have found that some
refactoring types are more harmful than others, such as refactorings involving
hierarchies (e.g., Pull up Method). Conversely, Weißgerber and Diehl (3)
investigate if the number of bug reports opened in the next five days after
the refactoring increases or decreases. That is, the authors investigate whether
the bug-proneness of refactored code increases or decreases according to the
number of refactorings and opened bug reports. They found that a high ratio
of refactorings is often followed by an increasing ratio of bug reports.

However, existing studies (1, 3) do not assess whether various recurring
characteristics of refactorings make code elements bug-prone. For instance,
the authors overlook the impact of different refactoring tactics on the bug-
proneness of refactored code. The bug-proneness of code elements refactored by
the different refactoring tactics might differ. Furthermore, the authors overlook
the fact that developers very often apply a sequence of refactorings (also named
batches) to improve the code structure quality (18, 40). Applying a sequence
of refactorings might be more or less bug-prone if compared to the application
of only one refactoring.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 1. Introduction 19

Moreover, existing studies (1, 3) performed coarse-grained analyses that
might overshadow the results of the bug-proneness of refactored code. First,
existing studies focus on analyzing the percentage of refactorings that make
code elements bug-prone. For that, they only take into consideration if a
refactored code contains at least one bug in further commits. This analysis
might not suffice to measure the bug-proneness of refactored code because a
bug might have emerged in the same code element many commits away from
the refactoring. Second, they do not manually analyze if the refactoring indeed
made the source code bug-prone in the analyzed software systems. As presented
in the motivating example, a refactoring was performed to fix a bug. In this
way, the refactoring should not be blamed for the bug. A manual analysis
is, therefore, essential to guarantee the reliability of the results. Third, these
studies only analyze a few software projects, and only consider major releases
instead of making a more fine-grained analysis (commit by commit). As there
are many changes between two major releases, many refactorings and bugs are
hidden or unidentifiable in their analyses. Given the aforementioned limitations
of previous studies, we propose a different approach for evaluating the bug-
proneness of refactored code.

1.4
Proposed Approach and Evaluation

While existing studies (1, 3) focus on analyzing whether refactored
code elements have bugs in further commits, we measure the bug-proneness
of refactored code according to two complementary properties. These two
properties serve to address various methodological limitations of previous
studies (Section 1.3). First, the frequency in which degraded code elements that
were refactored become buggy, and the frequency of refactorings performed
in code elements that are bug-prone. That is, the more frequently degraded
code elements are refactored and bug-prone, the higher the bug-proneness
of refactored code elements. Similarly, the more frequently refactorings are
performed in code elements that are bug-prone, the higher the bug-proneness
of refactored code elements. Second, the distance in number of changes between
the commit in which developers have applied the refactoring on degraded code
elements, and the commit in which the bug emerged. A bug can emerge in two
different commits. First, the commit in which the bug was indeed introduced
in the code element. Second, the commit related to when a developer or a
user opened a bug report. We consider both events of bugs, i.e., insert and
report, due to the fact that a bug can be perceived and reported by developers
or users after a long time that the bug was indeed introduced in the code

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 1. Introduction 20

element. Thus, the smaller the number of changes between the refactoring and
the bug, the higher the bug-proneness of refactored code elements.

The frequency and distance properties allow us to better characterize
how bug-prone is a refactored code. For instance, in the example presented
in Section 1.1, the distance property would be equal to one. In other words,
only one change was performed between the refactoring and the bug. In this
case, the change is the refactoring itself. As the bug was too close from the
refactoring, one could say that the refactoring is susceptible to contain bugs.
In the cases that the bug is too close from the refactoring, a manual analysis
is required to confirm if the refactoring can be blamed for the bug.

Besides proposing two complementary properties, in this dissertation,
we divided the refactorings into two disjoint sets. The first set is composed of
batch refactorings (or, simply, batches). Hence, if more than one refactoring
is applied to the source code by the same developer, and those refactorings
were applied to the same code element, then it is a batch. The second set is
composed of isolated refactorings. In other words, if a refactoring is not part
of a batch, then we call it an isolated refactoring. The goal to segregate the
refactorings is to assess if refactored code elements are more or less bug-prone
when developers apply multiple refactorings (batches) than when developers
apply only one refactoring (isolated refactoring).

To assess the bug-proneness of refactored code regarding the aforemen-
tioned complementary properties, we propose to evaluate it in the context of
degraded code elements. We focus on the analysis of degraded code elements
because (i) developers apply different refactoring tactics, i.e., root-canal and
floss refactorings, targeting at restructuring degraded code elements, and (ii)
developers much more often choose to apply refactorings in degraded code
elements (6, 32). We describe our study goal as follows: analyze refactorings
applied to structurally degraded code; for the purpose of assessing the bug-
proneness of refactored code; with respect to the frequency of refactored code
that became buggy, the frequency of refactorings performed in code elements
that are bug-prone, and the distance between the refactored code and the
code element that contain bug; from the point of view of researchers; in the
context of Java open source projects with bug reports available. In summary,
we address a general research question described as follows.

General Research Question. What are the characteristics of refactor-
ings that make refactored code elements bug-prone?

To reach our goal and answer our general research question, we per-

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 1. Introduction 21

formed two longitudinal multi-project studies. In the first study, we assessed
the bug-proneness of code elements refactored through isolated refactorings.
Furthermore, in the second study, we assessed the bug-proneness of code ele-
ments refactored through batch refactorings. Our studies involved 12 Java open
source projects, 39,750 refactorings, including 21,217 isolated refactorings and
7,828 batch refactorings, 2,119 refactorings manually validated by refactoring
tactic, 6,051 bug reports, and 49,250 bugs via static analysis. We describe each
study with its the specific research questions, and its findings as follows.

1.4.1
The Bug-Proneness of Code Refactored through Isolated Refactoring

The goal of the first study is to assess the bug-proneness of code elements
refactored through isolated refactorings. Table 1.1 presents the specific research
questions (SRQs) of this study. First, we assess the complementary properties
of the bug-proneness of refactored code, i.e., frequency and distance (SRQ1,
SRQ2, SRQ3). Then, we assess the different characteristics of the bug-proneness
of code refactored through isolated refactoring, i.e., we investigate the bug-
proneness regarding the refactoring types (SRQ4), and the refactoring tactics
(SRQ5). Hereafter, we present a summary of the findings concerning each
specific research question.

Table 1.1: List of specific research questions for the first study
SRQs Description

SRQ1
How many isolated refactorings were performed in code elements
that are bug-prone?

SRQ2
Are refactored code elements less bug-prone than non-refactored
code elements?

SRQ3
How many times a degraded code element that was refactored has
to change to become buggy?

SRQ4
How frequent degraded code elements are bug-prone per refactoring
type?

SRQ5
How many times a degraded code element that was refactored has
to change to become buggy per refactoring tactic?

Summary for SRQ1. Only 5.38% of the isolated refactorings were performed
in code elements that are bug-prone against 94.62% of isolated refactorings
performed in code elements that are not bug-prone at all. Additionally, 62.71%
of the refactorings performed in code elements that are not bug-prone touched
in code elements without any code smell. Similarly, 63.14% of the refactorings
performed in code elements that are bug-prone touched in code elements with

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 1. Introduction 22

either a single smell or multiple smells. This result shows that the refactoring
might not have sufficed to fully overcome the degradation in the source code,
and, as a result, bug(s) emerged in future commits.

Summary for SRQ2. 79.67% of the smelly elements that became buggy were
not previously refactored. This result shows that degraded, non-refactored code
tends to be more bug-prone than degraded, refactored code.

Summary for SRQ3. We analyzed the code elements that became buggy
after the application of isolated refactorings. In 75% of these cases, at least
seven additional changes were performed between the refactoring and the
bug. Additionally, these seven changes were performed in approximately three
months between the isolated refactoring and the bug. As a result, code
elements refactored through isolated refactorings are often not susceptible to
immediately contain bugs. Then, we manually analyzed the remaining 25%
of the refactored code elements that became buggy; these elements represent
the cases where the distance of refactoring to bugs was lower than 9 changes.
Surprisingly, in these cases, we could not find any explicit case of refactored
code that indeed induced the bug, as previous work suggests (1). On the
contrary, we found that the changes performed between isolated refactorings
and bugs are more likely to make code elements bug-prone.

Summary for SRQ4. We analyzed which refactoring types (used in isolated
refactorings) are often related to the occurrence of bugs. Bugs were more fre-
quently found in code refactored by Extract Method and Inline Method. Fur-
thermore, few changes are necessary after the application of these refactoring
types so that the refactored code become buggy. Thus, developers should be
aware when applying Extract Method and Inline Method.

Summary for SRQ5. In 75% of the times that a code element affected by a
floss refactoring became buggy, it is necessary at least eight changes after the
floss refactoring so that the code element becomes buggy. Surprisingly, when
considering 100% of the times that a code element affected by a root-canal
refactoring becomes buggy, fewer changes are necessary after the application
of a root-canal refactoring so that the code element becomes buggy compared
to floss refactoring. Thus, root-canal refactoring is at least as bug-prone as
floss refactoring.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 1. Introduction 23

1.4.2
The Bug-Proneness of Code Refactored through Batch Refactoring

The goal of the second study is to assess the bug-proneness of batch
refactoring. After studying the bug-proneness of code refactored through
isolated refactoring, there is a need to empirically investigate the bug-proneness
of code elements refactored through batch refactoring. As refactoring might
be risky as any other change in the source code, one could say that if more
refactorings are applied to a code element, then more bug-prone the code
element becomes. On the other hand, others could claim that the more a code
element is refactored, the less it becomes susceptible to contain bugs. However,
neither of these claims are tested since the literature does not assess the bug-
proneness of code refactored through batch refactorings.

Thus, in this study, we investigate batches as one of the characteristics
of refactorings. For that, we analyze the bug-proneness properties of code
refactored through batch refactorings. Furthermore, we compare the results
of this study with results of the study of isolated refactorings. The goal to
compare the bug-proneness of code refactored through batch refactoring and
isolated refactoring is to see if code refactored through batches are more bug-
prone than code refactored through isolated refactoring. Table 1.2 presents
the specific research questions (SRQs) of this study. We also present below the
summary of each specific research question.

Table 1.2: List of specific research questions for the second study
SRQs Description

SRQ6
How many batch refactorings were performed in code elements
that are bug-prone?

SRQ7
Are code elements refactored through batch refactorings less
bug-prone than non-refactored code elements

SRQ8
Does the bug-proneness of degraded code elements decrease
when applying batch refactoring?

Summary for SRQ6. Our results show only 1.75% of the batch refactorings
were performed in code elements that became buggy, against 98.25% of batch
refactorings that were performed in code elements that not became buggy at
all. By comparing these results with the ones found in RQ1, we can see that
code refactored through isolated refactorings is more bug-prone than code
refactored through batch refactorings.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 1. Introduction 24

Summary for SRQ7. 87.75% of the degraded code elements that became
buggy were not previously refactored by a batch refactoring. On the contrary,
only 12.25% of degraded code elements that became buggy were refactored
through a batch refactoring. As a conclusion, a batch refactoring could have
been applied to the degraded code elements in order to make them less bug-
prone.

Summary for SRQ8. In 75% of the times that code elements refactored
through batch refactorings are bug-prone, a code element needs least eight
changes after a batch refactoring so that the code element becomes buggy.
However, when comparing isolated and batch refactoring, in 75% of the times
that refactored code elements are bug-prone, it is necessary more changes so
that the code element becomes buggy after a batch refactoring than after an
isolated refactoring.

1.5
Contributions

This section summarizes the contributions of our studies on deriving
new knowledge about the bug-proneness of refactored code. These contribu-
tions provide insights for both researchers and practitioners. We discuss each
contribution as follows.

– This dissertation proposes two complementary properties of the bug-
proneness of refactored code: frequency and distance. By assessing both
properties, we were able to better characterize the bug-proneness of
refactored code. As a result, we found that we cannot blame refactorings
for bugs, as previous work suggest (1, 3).

– This dissertation also compares the findings of our empirical study
with previous findings of another study (1). Our in-depth analyses
put the investigation about the bug-proneness of refactored code from
previous work (1, 3) into another perspective. That is, only analyzing if a
refactored code has a bug in further commits is not enough to understand
the relation between refactored code and bugs. It is also necessary to look
to other characteristics of refactorings to reveal the circumstances that
make refactored code bug-prone.

– Furthermore, the properties proposed in this dissertation allowed us
to contradict previous study (1). For instance, Bavota et al. found
that refactoring types related to hierarchy are the most harmful ones.
However, we found that a refactored code is never bug-prone after the

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 1. Introduction 25

application of these refactoring types. As a conclusion, refactoring types
related to hierarchy cannot be directly blamed for bugs, as previous study
suggests.

– Moreover, this dissertation investigates the effects of refactoring tactics
and batch refactorings, which are unexplored by previous work (1, 3). Our
results show that more changes are necessary after a batch refactoring
(than after an isolated refactoring) so that the code element becomes
buggy. Furthermore, surprisingly, root-canal refactoring is at least as
bug-prone as floss refactoring.

– Finally, we provide recommendations for developers based on the char-
acteristics found in the studies performed in this dissertation.

1.6
Dissertation Outline

The remainder of this dissertation is organized as follows. Chapter 2
provides background information to help the readers understanding this dis-
sertation as well as the literature review. Chapter 3 describes the study design,
including the study goal. Chapter 4 discusses the first study conducted in this
dissertation where we investigate the bug-proneness of code refactored through
isolated refactorings. Chapter 5 discusses the second study where we investi-
gate the bug-proneness of code refactored through batch refactorings. Finally,
Chapter 6 concludes the dissertation with a summary of our contributions and
suggestions for future research.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



2
Background and Related Work

Code refactoring is a program transformation used to improve the struc-
ture of a program while preserving its observable behavior (19). Refactoring, in
practice, consists of two significantly different tactics, namely root-canal and
floss refactoring (18, 56). Developers apply root-canal refactoring when they
aim to exclusively improve the code structure quality. On the contrary, devel-
opers apply floss refactoring when they aim to refactor the code together with
non-structural changes as a means to reach other goals, such as adding features
or fixing bugs. There is an explicit assumption that code refactoring improves
the structural quality of a program, thereby reducing the likelihood of bugs
on the refactored code elements. However, this assumption might not always
hold. Developers might unconsciously make the source code more susceptible
to contain bugs depending on the complexity of the refactoring.

Previous studies (1, 3) neither investigate the bug-proneness of refactored
code in depth, nor the influence of the refactoring tactics on bugs. Only a few
studies (1, 3) solely analyze the bug-proneness of refactored code. They provide
evidence that refactored code is often susceptible to contain bugs. However,
these studies (1, 3) are limited in only assessing whether the refactored code
contains a bug in further commits. This analysis might not suffice to blame
refactorings for bugs since the refactored code element could have become
buggy very far in terms of commits from the refactoring.

To address the limitation of previous studies, this dissertation presents
two longitudinal multi-project studies aimed at assessing the bug-proneness of
refactored code. This chapter provides background information, i.e., the basic
terminology which underlies all next chapters. The remainder of this chapter
is organized as follows. Section 2.1 presents the basic concepts related to code
degradation, refactoring, and bugs. In section 2.2 we discuss related work aimed
at contextualizing our research from different perspectives in the literature.
For that, we present a literature review about previous studies that are closely
related to ours. Hence, we present studies that investigate the relationship
between (i) code structural quality and bugs, and (ii) refactorings and bugs.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 2. Background and Related Work 27

2.1
Basic Concepts

We introduce the basic concepts in two parts. First, we present concepts
related to code degradation and refactoring. Second, we present the concepts
related to bugs and the bug-proneness of refactored code.

2.1.1
Code Degradation and Code Refactoring

Code refactoring consists of transformations used for improving the
structure of a program while preserving its observable behavior (19). Devel-
opers apply refactoring with different purposes (33, 34), such as removing
design problems, reducing maintenance effort, facilitating feature additions,
improving program testability, or even supporting bug fixes (33, 34, 35).
Likewise, even though refactoring is intended to improve the code structure,
developers still need to know in which code elements they should apply it.
Previous work (6, 32) suggest that the presence of code smells should be
used as a symptom of the need for applying refactoring. A code smell is a
microstructure in the program that represents a symptom of a structural
problem. It is expected that developers refactor their code as soon as code
smells start to affect the code elements (38, 39). An example of a code smell
is when a method is more interested in data from another class than the data
in its own class (39). In this case, developers can apply a refactoring to move
the method to the class in which it is interested.

Refactoring Type. It refers to the kind of transformation applied to one or
more code elements. An example of a refactoring is when the developer moves
a method from one class to another in order to remove excessive dependen-
cies between classes. This refactoring type is called Move Method. There are
other refactoring types with different purposes, such as extracting new code
elements from excessively complex elements and managing class inheritances.
Therefore, given a refactoring r, type(r) is a function that returns the type
of the refactoring r. We chose to study the 13 most commonly investigated
refactoring types in the literature (18). These refactoring types are defined in
the Fowler’s catalog (19). We present a description of each refactoring type
on Table 3.3 in Chapter 3.

Refactored Code Elements. In this dissertation, we consider as refactored
elements all those directly affected by a refactoring operation. For instance, let
us consider the Move Method refactoring. In this refactoring type, a method

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 2. Background and Related Work 28

m is moved from class A to B. Hence, the refactored elements, in this case, are
{m,A,B}. All callers of m are indirectly affected by this refactoring, but we
do not consider them as refactored elements due to the fact that the broader
the scope of a refactoring, there are more chances to mislead the conclusions
of the studies performed in this dissertation. Similar reasoning applies to
the other refactoring types; thus, for each refactoring type, a different set of
refactored elements is used. In this way, given a refactoring operation r, el(r)
is a function that returns the set of refactored elements of r. We present the
refactored elements of each refactoring type on Table 3.4 in Chapter 3.

Refactoring Tactic. Developers apply two refactoring tactics: root-canal
refactoring and floss refactoring (18, 56). Developers apply root-canal refac-
toring when they aim to exclusively improve the code structure quality. On
the contrary, developers apply floss refactoring when they aim to refactor the
code together with non-structural changes as a means to reach other goals,
such as adding features or fixing bugs.

Isolated and Batch Refactoring. In the context of this dissertation, a se-
quence of refactorings is considered a batch refactoring (or, simply, a batch) if
some constraints are satisfied. First, a batch must have more than one refac-
toring. Second, if b = [r1, r2, · · · , rn] is a batch of size n, then [r1, r2, · · · , rn]
is a list of refactoring operations ordered chronologically. Third, all refac-
torings must have at least one code element in common (18, 40). Thus,
el(r1)∩ el(r2)∩· · ·∩ rn 6= ∅. Finally, all refactorings in a batch must have been
performed by the same developer. Figure 2.1 presents two examples of batches.
The developer performed two refactorings in the UserCtrl class in the first com-
mit. In this way, the batch b1 is composed of {Extract Method, Inline Method}.
The b2 batch occurs in the class User. The developer applied two Move Method
refactorings. In this way, b2 = {Move Method,Move Method}. Besides the
batch, a refactoring operation can be considered an isolated refactoring. That
is, if a refactoring is not part of a batch, i.e., if a refactoring does not satisfy the
aforementioned constraints, then this refactoring is an isolated refactoring. In
the projects analyzed in this dissertation, we found 21,217 isolated refactorings
and 7,828 batches.

2.1.2
Bugs and Bug-Proneness of Refactored Code

A bug consists of a mistake made by the developer during the software
development and maintenance, which violates the expected behavior of the

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 2. Background and Related Work 29

Figure 2.1: Batch refactoring example

software system (42, 58, 59). Software users and developers are encouraged to
report the identified bugs through bug tracking systems, such as Bugzilla and
Jira (42). Then, a bug report is created. A bug report is a detailed description
of the failure (unexpected behavior observed by a user or a developer), and it
occasionally has a hint at the location of the fault (the actual mistake in the
program) in the code, e.g., patches or stack traces (63). Overall, bug reports
are generated along the life cycle of a software system, and often accumulate
enriching information about bugs that affect the system.

Another way of discovering bugs in software systems is by using static
analysis tools. Such tools look for violations of programming practices without
running the source code (64). In this study, we used FindBugs for this purpose,
which is very popular tool (65). The tool implements several bug patterns
that are commonly used to find a significant number of bugs in software
projects (65). For study purposes, we focus on categories of bug patterns iden-
tified by the tool, which possibly relates to code refactoring (see Table 3.5).
We aimed at choosing bug patterns that may affect the code structure as well
as those that may be related to refactorings.

Bug-Introducing Changes and Buggy Code Elements. Developers
change the source code to add or to remove functionalities, to refactor, or
to fix a bug. Thus, they might be inadvertently introducing bugs through a
change of the source code. This change is called bug-introducing change. Later
on, the bug may manifest during the program execution when the unexpected
behavior is observed by a user. This behavior is recorded in a bug tracking
system (i.e., bug reports) as soon as it is revealed (12). Afterwards, developers
perform a change in the source code to fix the bugs described in bug reports.
When they commit this change, they mention in the commit message that the
change was made to fix a bug. Thus, we call it bug-fix change. Thus, we define

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 2. Background and Related Work 30

that be is a buggy element only if be is involved with the fix of a bug described
in a bug report, or if be is considered buggy by a tool that detects bugs via
static analysis.

Bug-Proneness of Refactored Code. Bug-proneness is the susceptibility
of a code element containing a bug. Thus, a refactored code element is bug-
prone if it is susceptible to contain a bug after being refactored. In the case
that the refactored code indeed contains a bug, we say that the code element
became buggy. The susceptibility of a refactored code element may depend
on particular characteristics observed on it. For instance, one could argue
that some refactoring types make the refactored code element more bug-
prone than other refactoring types. Additionally, depending on the refactoring
tactic applied by the developer, the refactored code is more susceptible to
contain bugs. Furthermore, the bug-proneness of refactored code might differ
if a developer applied an isolated refactoring or a batch refactoring.

We measure the bug-proneness of a code element by computing two
properties: frequency and distance. First, the frequency in which degraded
code elements that were refactored become buggy, and the frequency of refac-
torings performed in code elements that are bug-prone. In the first analysis,
the frequency property can be measured by considering either when a degraded
code element was refactored or not refactored. Hence, the more frequently
degraded code elements become buggy, the higher the bug-proneness of the
code element. Additionally, in the latter analysis, the frequency property can
be measured by considering either when a refactoring was performed in a code
element that is bug-prone or not bug-prone at all. Thus, the more frequently
refactorings are performed in code elements that are bug-prone, the higher the
bug-proneness of refactored code elements. Second, the distance in number of
changes between the commit in which developers have applied the refactoring
on degraded code elements (refactoring commit) and the commit of the bug.
The commit of the bug can be (i) the commit in which the bug was introduced
by a developer (bug-introduction commit), or (ii) the commit in which a user
or a developer reported the bug (bug-report commit). We consider both events
of bugs, i.e., bug-introduction commit and bug-report commit, due to the
fact that a bug can be perceived and reported by developers or users after a
long time that the bug was indeed introduced in the code element. Thus, the
smaller the number of changes between the refactoring and the bug, the higher
the bug-proneness of the code elements. The distance property enables us to
understand how close or how far a refactored code element become buggy
after being refactored.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 2. Background and Related Work 31

Bug-Proneness of Code Refactored through Batch Refactoring. The
bug-proneness of a code refactored through batch refactoring is measured in
the same way as for an isolated refactoring. However, as a batch is composed
of multiple refactorings, we consider only the first refactoring in the batch
to compute the distance. Thus, given batch = {r1, r2, · · · , rn}, we say that
the distance property will be computed from the first refactoring commit vr1

(where r1 is the first refactoring operation in the batch) to the commit in which
the code element became buggy vbe .

2.2
Literature Review

This section shows how our study significantly differs from others while
sharing some goals. Section 2.2.1 presents studies about code degradation and
bugs and how our study differ from literature. Section 2.2.2 presents studies
about refactorings and bugs, and a comparison about the study settings.

2.2.1
Studies on Code Degradation and Bugs

Previous work (43, 44, 45, 46) have studied the relationship between the
degradation of the code structure quality and bugs. Khomh et al. (43, 45), for
instance, have shown that degraded code elements are more change and bug-
prone than others. Similarly, D’Ambros, Bacchelli, and Lanza (44) evaluated
whether an increase in the number of code smells can induce bugs or not. That
is, the authors assess if more degraded code elements are, more susceptible to
contain bugs the code elements are. As a result, they have found that an
increase in the number of code smells is likely to induce bugs in the software
systems. Furthermore, a recent study conducted by Rahman and Roy (46)
revealed that code clones might introduce bugs in the software systems if such
code elements are not changed consistently during software evolution.

In summary, all these studies have investigated the fact that degraded
code elements may be somehow related to bugs. Their findings potentially help
in identifying classes that need to be refactored. However, these studies (43,
44, 45, 46) overlook the fact that developers very often apply refactorings to
remove the structural problem (6, 19). Hence, in this dissertation, we aim at
filling the literature’s gap by analyzing the frequency that refactored code is
bug-prone regarding its degradation level and the frequency of refactorings
performed in code elements that are bug-prone.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 2. Background and Related Work 32

2.2.2
Studies on Refactorings and Bugs

Some studies have investigated the bug-proneness of refactored code (1,
3). Bavota et al. (1) analyze if refactoring induces bugs. In other words, the
authors analyze if refactored code elements contain bugs in further commits.
They focus on analyzing (i) the percentage of refactored code elements that
are bug-prone, and (ii) the refactoring types that are more likely to make
the refactored code bug-prone. Their results show that refactored code is often
bug-prone. Furthermore, they have found that some refactoring types are more
harmful than others, such as refactorings involving hierarchies (e.g., Pull up
Method). Conversely, Weißgerber and Diehl (3) investigate if the number of bug
reports opened in the next five days after the refactoring increases or decreases.
That is, the authors investigate whether the bug-proneness of refactored code
increases or decreases according to the number of refactorings and opened bug
reports. They found that a high ratio of refactoring is often followed by an
increasing ratio of bug reports.

However, existing studies (1, 3) do not assess the characteristics of
refactorings that make code elements bug-prone. That is, the authors overlook
the impact of different refactoring tactics on the bug-proneness of refactored
code. The bug-proneness code elements refactored by the different refactoring
tactics might differ. Furthermore, the authors overlook the fact that developers
very often apply batch refactorings (18, 40). Applying batches might be more
or less bug-prone if compared to the application of isolated refactorings.

Moreover, existing studies (1, 3) performed coarse-grained analyses that
might overshadow the results of the bug-proneness of refactored code. First,
existing studies do not analyze the complementary properties of the bug-
proneness of refactored code, i.e., frequency and distance (see Section 2.1.2).
These properties allow us to better characterize how bug-prone is a refactored
code. For instance, the distance property allow us to know if a code element
became buggy very close or very far from the refactoring. Instead, existing
studies (1, 3) focus on analyzing the percentage of refactorings that make
code elements bug-prone. For that, they only take into consideration if a
refactored code contains at least one bug in further commits. This analysis
might not suffice to measure the bug-proneness of refactored code because a
bug might have emerged in the same code element many commits away from
the refactoring. Second, they do not manually analyze if the refactoring indeed
made the source code bug-prone in the analyzed software systems. A manual
analysis is, therefore, essential to guarantee the reliability of the results. Third,
these studies only analyze a few software projects, and only consider major

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 2. Background and Related Work 33

releases instead of making a more fine-grained analysis (commit by commit).
As there are many changes between two major releases, many refactorings and
bugs are hidden or unidentifiable in their analyses.

In order to fill the gap in the literature, we perform a more fine-grained
analysis by considering the (i) the characteristics of refactorings that make
code elements bug-prone, (ii) the complementary properties of the bug-
proneness of refactored code, (iii) the entire history of commits in 12 software
projects against major releases in only 3 software projects from previous
work (1). Our goal is to verify whether refactoring is bug-prone, as previous
work suggests (1, 3).

Comparison among Study Settings. Table 2.1 presents studies that
somehow investigate the relationship between refactorings and bugs. The first
column presents each related work. The second column presents the goal of
each related work. The third column shows the tools that each study relied on
to collect data. The fourth column presents the approaches adopted to collect
the refactorings. The fifth column presents the analyzed software projects. The
sixth column presents the approach used to collect bugs. Finally, the seventh
column summarizes the procedures for data analysis. We discuss the main
limitations of each related work listed in the table and also present how our
empirical study addresses these limitations as follows.

Regarding the software projects, we analyzed 12 well-known projects from
different domains. In fact, most related studies (1, 3, 28, 48) analyze only two
software projects. Concerning the bug detection process, we carefully evaluate
both bugs explicitly described in reports and bugs detected via static analysis,
which we validated with 14 researchers against only two researchers of the only
study that also validates bugs (28). Previous work (1, 3, 28, 48) consider all
bug reports as real bugs. However, Kim et al. (23) mentions that bug report
classifications are unreliable, and there might be a bug report for enhancement
rather than an actual bug. We emphasize that it is important to identify bugs
from different sources since there might be cases where bugs could not have
been identified and reported by users or developers in bug reports.

Concerning the refactoring computation, in our work, we automatically
detected refactorings by using the Refactoring Miner tool (20, 66), while
the other studies (41, 48) do not systematically distinguish changes that are
actual refactoring operations. Thus, they misidentified some refactorings by
considering changes like variable replacements, varying logic of statements,
and others non-explicitly related to refactoring. Finally, they analyze the
refactoring operations throughout the project releases rather than commits.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 2. Background and Related Work 34

In our work, we consider the entire set of commits for all software projects
analyzed in this study.

Table 2.1: Overview of previous studies versus our study
Study Study

Goal
Tool

Support
Change

Detection
Software
Projects

Bug
Detection Data Analysis

Bavota et al.,
SCAM’12 (1)

Understand to
what extent

refactorings induce
bugs

Ref-finder; SZZ
All Refactorings,
Per refactoring
type; Per release

3 Projects: Ant,
ArgoUML, Xerces Bug report Refactorings

inducing bugs

Kim et al.,
ASE’06 (28)

Propose algorithms
to automatically

identify
bug-introducing

changes

Adapted SZZ N/A
2 Projects:

Columba, Eclipse
IDE

Bug report;
SCM Changes only

Ratzinger et
al.,

MSR’08 (41)

Analyze the
influence of

refactoring on bugs
CVS for changes Historical change

analysis only

5 Projects:
ArgoUML, JBoss
Cache, Liferay
Portal, Spring
Framework,
XFramework

Bug report;
CVS

Analyze
refactorings to

predict bugs in the
near future

Śliwerski et
al.,

MSR’05 (24)

Analyze when
changes induce bug

fixes
CVS for changes Bug-fixes only 2 Projects: Mozilla,

Eclipse IDE Bug report Fix-inducing
changes

Weißgerber
et al.,

MSR’06 (3)

Analyze whether
refactoring is less
error-prone than
other changes

CVS for changes;
RefVis for
validating
refactoring
candidates

Per refactoring
type; Per release

3 Projects:
ArgoUML, JEdit,

JUnit
Bug report

Analyze the
percentage of

refactorings per
day according to
the ratio of bugs
opened within the

next 5 days.

Wu et al.,
FSE’11 (48)

Recover links
between bugs and
committed changes

Proposed the
ReLink tool that
links changes and

bugs

Changes among
commits

2 Projects: ZXing,
OpenIntents

Bug report;
CVS; SVN Change logs

Our Study
Assess the

bug-proneness of
refactored code

Refactoring Miner,
heuristic to detect
batches, adapted
version of SZZ

Isolated
Refactoring, Batch
Refactoring, Per
refactoring tactic,
per refactoring
type, the entire

history of commits

12 Projects

Bug reports,
bugs via
static

analysis

The bug-proneness
of refactored code

in terms of
frequency and

distance.
Furthermore,
analyzing the

characteristics of
refactorings that

make code
elements bug-prone

2.3
Final Remarks

This chapter provided the required background to support the under-
standing of this dissertation. We presented the basic concepts used through-
out the next chapters. Besides the basic concepts, we discussed related work
as follows. First, we presented empirical studies on the relationship between
code structural quality and bugs. Second, we discuss studies that investigate
the relationship between refactorings and bugs. Based on the discussion pre-
sented in this chapter, we claim that it is necessary a more fine-grained and
systematic analysis to better assess the bug-proneness of refactored code. For
this purpose, the next chapter presents our research methodology.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



3
Research Methodology

This chapter presents our research methodology for assessing the bug-
proneness of refactored code. We applied this methodology in the context of
two longitudinal studies in different contexts. In other words, our research
methodology was intended to support the assessment of bug-proneness in the
context of isolated refactorings (Chapter 4) and batch refactorings (Chapter 5).
These studies allow us to have a better understanding of the influence of key
refactoring characteristics on the bug-proneness.

The goal is the same for the two longitudinal studies, while some study
procedures might differ from one study to another. Thus, this chapter provides
the common procedures for both studies described in Chapter 4 and Chapter 5.
The specific research questions of each study are described in each chapter.

Thus, the remainder of this chapter is organized as follows. Section 3.1
presents the research goal. Section 3.2 presents the procedure to select software
projects. Section 3.3 presents the procedure to detect code smells. Section 3.4
presents the procedure to identify refactorings. Section 3.5 presents how we
identify bugs as well as the bug report commit. Sections 3.6 and 3.7 presents
the procedure to identify the bug-fix commit and bug-fix elements, and the bug-
introducing commit, respectively. Section 3.8 presents how we detect changes.
Finally, Section 3.9 presents the final remarks of this chapter and introduces
the next chapter.

3.1
Research Goal

The empirical studies presented in this dissertation aim at evaluating
the bug-proneness of refactored code. By relying on the guidelines provided by
Wohlin et al. (2), we refined and structured the study goal as follows:

– Analyze refactorings applied to structurally degraded code
– For the purpose of assessing the bug-proneness of refactored code
– With respect to the frequency of refactored code that became buggy,
the frequency of refactorings performed in code elements that are bug-
prone, and the distance between the refactored code and the code element
that contain bug

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 3. Research Methodology 36

– From the viewpoint of researchers
– In the context of Java open source projects with bug reports available.

Figure 3.1 illustrates the common study phases for the two studies
conducted in this dissertation. First, we select software projects to be ana-
lyzed in the two studies. Second, we detect code smells since our analyses
are performed in the context of degraded code elements. Third, we identify
refactorings for all commits of all analyzed software projects. Additionally,
we perform a manual validation to guarantee the reliability of our results.
Fourth, we detect bugs from two different sources, i.e., bugs reported by a
user or a developer, and bugs identified via static analysis tools. We chose to
study both sources of bugs since not all bugs in a system are identified and
reported by developers and users in bug reports. Furthermore, we detect all
code elements and commits that are fundamental for the analyses performed
in the two studies. Finally, we detect changes performed in each commit of
each software project. We describe in detail each phase in the next sections.

3.2
Software Projects Selection

To conduct our studies, we selected a set of software projects from
GitHub repository. We analyze 12 software projects selected using the following
quality criteria. First, Java projects, a very popular programming language1.
Second, open source projects to allow the studies replication. Third, highly
popular projects and from different domains. Fourth, users actively use their
issue tracking systems such as Bugzilla and the GitHub issue management
system for bug reporting. Fifth, software projects in which their developers
have the culture to describe in the commit message the bug report being fixed
in such commit. Furthermore, we focused the data analysis on open source
projects to support the studies replication and extension. In addition, it is
difficult to have access to the proprietary code for analysis, but there are
several open source projects with many contributors, e.g., Elasticsearch (1,021
contributors). Moreover, by analyzing open source projects, we can compare
our results with previous work (1, 3) that also analyze open source projects.

Table 3.1 provides general data about the analyzed projects. The first
column presents the name of the software project. The second column presents
the number of lines of code. The third column presents the number of classes.
The fourth column presents the analyzed period. The fifth column presents
the number of commits.

1https://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/
DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 3. Research Methodology 37

Figure 3.1: Study Phases

3.3
Code Smell Detection

Code smells are often identified with rule-based strategies (15). Each
strategy defines a set of software metrics and thresholds. Thus, to apply
such strategies, it is necessary to compute software metrics for all projects.
After collecting the selected metrics, we applied a set of previously defined
rules (16, 17) to identify code smells per software project. The specific metrics
and thresholds for supporting the identification of code smells were defined in
a previous work (17). We used these rules because they are refinements of the
well-known rules proposed by Lanza and Marinescu (16), and have a precision
of 72% and recall of 81% on average (17).

Table 3.2 presents the 17 types of code smells analyzed in our studies
(19). We selected these code smells since they are very common, and they

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 3. Research Methodology 38

Table 3.1: General data of the analyzed software projects
Software Project LOC #Classes Analyzed Period #Commits

Ant 137,314 1,784 2000-01 to 2016-07 13,331
Derby 1,760,766 3,741 2004-08 to 2017-08 7,865

Elasticsearch 578,561 8,845 2010-08 to 2016-08 23,597
Elasticsearch-hadoop 34,640 599 2013-11 to 2017-11 1,718

ExoPlayer 87,321 1,218 2014-06 to 2017-10 3,081
Fresco 50,779 860 2015-03 to 2017-11 1,535

Material-dialogs 7,584 98 2014-05 to 2017-10 1,330
Netty 244,694 4,316 2008-08 to 2017-11 8,357
OkHttp 49,739 642 2011-05 to 2016-08 2,645
Presto 350,976 4,146 2012-08 to 2016-08 8,056

Spring-boot 178,752 6,513 2012-10 to 2016-08 8,529
Tomcat 668,720 2,275 2006-03 to 2016-12 17,732
Sum 4,149,846.00 33,702.00 - 97,776.00
Mean 345,820.50 2,808.50 - 8,148.00
Stdev 494,967.03 2,550.72 - 7,040.05

are directly related to the most frequent refactoring types (19, 21, 31). For
instance, Feature Envy is a code smell type that refers to a method that is
more interested in other classes than in its own class (19). To remove this code
smell, developers apply a refactoring type called Move Method to move the
“envious method" from its current class to the class to which it is interested.
The first column shows the smell type, and the second column presents the
description of the smell.

3.4
Refactoring Detection and Manual Validation

Let S = {s1, · · · , sn} be a set of software projects. Each software s has
a set of commits V (s) = {v1, · · · , vm}. Each commit vi has a set of elements
E(vi) = {e1, · · · , ek} representing all methods, classes and fields belonging
to it. To detect refactorings, we must analyze transformations between each
subsequent pair of commits. Thus, we assume that R is a refactoring detection
function whereR(vi, vi+1) = {r1(rt1, e1), · · · , rk(rtk, ek)} gives us a set of tuples
composed of two elements: the refactoring type (rti) and the set of refactored
elements represented by ei. So, the function R returns the set of all refactorings
detected in a pair of commits.

We used the Refactoring Miner tool (20, 66) to identify refactorings in
the selected projects. Tsantalis et al. (20, 66) have reported that Refactoring
Miner has a precision of 98%, and a recall of 87%. We choose to study the
13 most commonly investigated refactoring types in the literature (18). These
refactoring types are defined in the Fowler’s catalog (19). Refactoring Miner
detects all 13 refactoring types investigated in our studies (11). We identified

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 3. Research Methodology 39

Table 3.2: Analyzed Smell Types
Smell Type Description
Brain Class Long and complex class that centralizes the intelligence of the system
Brain Method Long and complex method that centralizes the intelligence of a class
Class Data Should
Be Private A class exposing its fields, violating the principle of data hiding

Complex Class A class having at least one method having a high cyclomatic complexity
Data Class These are classes that have only fields and accessors methods

Dispersed Coupling A method that accesses many code elements, and the accessed code
elements are dispersed among many classes

Feature Envy A method that is more interested in a class other than the one it
actually is in

God Class When a class centralizes the system functionality

Intensive Coupling A method that has tight coupling with other methods, and these
coupled methods are defined in the context of few classes

Lazy Class A class having very small dimension, few methods and with
low complexity

Long Method A method that is unduly long in terms of lines of code
Long Parameter List A method having a long list of parameters, some of which avoidable

Message Chain A long chain of method invocations is performed to implement
a class functionality

Refused Bequest A class redefining most of the inherited methods, thus signaling
a wrong hierarchy

Shotgun Surgery When a change performed on it demands a lot of little changes
to several different classes

Spaghetti Code A class implementing complex methods interacting between them,
with no parameters, using global variables

Speculative Generality A class declared as abstract having very few children classes using
its methods.

39,750 refactoring operations in total. Table 3.3 presents the refactoring types
analyzed in our studies. The first column presents the refactoring type. The
second column describes the problem that is intended to be addressed by
each refactoring type. The third column describes the solution intended by
applying each refactoring type. Furthermore, Table 3.4 presents the elements
considered as refatored according to each refactoring type.

Manually validate refactoring. We conducted a manual validation of the
refactorings identified by the Refactoring Miner tool to ensure the reliability
of our data. Such validation covered a random set of refactoring operations
from different refactoring types since the precision of the Refactoring Miner
tool could vary due to the rules implemented to detect each refactoring type.
We recruited ten undergraduate students to analyze the samples. The samples
were divided into ten disjointed sets, and each student validated a different one.
After applying a statistical test with a confidence level of 95%, we observed

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 3. Research Methodology 40

Table 3.3: Analyzed Refactoring Types
Refactoring

Type Problem Solution

Extract Method A code fragment can be grouped together Turn the fragment into a method whose name
explains the purpose of the method

Extract
Interface

Several clients use the same subset of a class’s
interface, or two classes have part of their

interfaces in common
Extract the subset into an interface

Extract
Superclass There are two classes with similar features Create a superclass and move the common

features to the superclass

Inline Method When a method body is more obvious than the
method

Replace calls to the method with the method’s
content and delete the method itself

Move Class Your class belongs to a package that other classes
unrelated to it

Move the class to a related package or create a
new package if required for further use

Move Field A field is, or will be, used by another class more
than the class on which it is defined

Create a new field in the target class, and change
all its users

Move Method
A method is, or will be, using or used by more
features of another class than the class in which

it is deffined

Create a new method with a similar body in the
class it uses most. Either turn the old method
into a simple delegation, or remove it altogether

Rename Class The name of the class does not reveal its purpose Change the name of the class and update all
callers

Rename Method The name of a method does not reveal its purpose Change the name of the method and update all
callers

Pull up Field Two subclasses have the same field Move the field to the superclass

Pull up Method There are methods with identical results on
subclasses Move them to the superclass

Push down
Field A field is used only by some subclasses Move the field to those subclasses

Push down
Method

The behavior on a superclass is relevant only for
some of its subclasses Move it to those subclasses

a high precision of the tool for each refactoring, with a median of 88.36%.
By applying the Grubb outlier test (22) (α = 0.05), we could not find any
outliers, indicating that no refactoring type strongly influences the median
precision found. Thus, the obtained results represent a key factor to trust on
the results reported in this dissertation.

3.5
Bug Detection and Manual Validation

We identify bugs for the selected software projects in two different ways:
(i) bugs reported in bug reports, and (ii) bugs detected via static analysis tools.
We chose to analyze bugs from different sources since bugs reported in issue
tracking systems are the ones that users/developers have found during testing
or production time, for instance. However, there might exist dormant bugs in
the source code that have not been reported or identified yet. Therefore, these
bugs can be identified through static analysis tools.

We selected bug reports with status resolved fixed, verified fixed, closed, or
closed fixed for analysis. Furthermore, we chose to analyze only bugs labeled as
“bug” or “defect” in the issue tracking system. We collected 6,051 bug reports.
Besides collecting bug reports, we detected the commit in which the bug was
reported. For that, we consider the commit in the date before the bug report
was opened.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 3. Research Methodology 41

Table 3.4: Refactored Elements
Refactoring Type Refactored Elements
Extract Interface classes implementing the new interface

Extract Method (i) method created; (ii) method from where the new
method was extracted; and (iii) class containing both methods

Extract Superclass (i) classes extending the new class; and (ii) new class created

Inline Method (i) the method which received the new code; and (ii) class
containing the method

Move Field the two classes affected by the change: the class which the field
used to reside and the class which received the field

Move Class the two packages affected by the change: the package which the class
used to reside and the package which received the class

Move Method the two classes affected by the change: the class which the method
used to reside and the class which received the method

Pull Up Field the two classes affected by the change: the class which the field
used to reside and the class which received the field

Pull Up Method the two classes affected by the change: the class which the method
used to reside and the class which received the method

Push Down Field the two classes affected by the change: the class which the field
used to reside and the class which received the field

Push Down Method the two classes affected by the change: the class which the method
used to reside and the class which received the method

Rename Class the renamed class and the package that contains it.
Rename Method the renamed method and the class that contains it.

Additionally, we used the FindBugs tool (version 3.0.1) (51) to detect
bugs via static analysis for each commit of two software projects. We have
identified 49,250 bugs using FindBugs for the projects Apache Derby and
Apache Tomcat. Table 3.5 presents the description of each bug pattern se-
lected for the studies performed in this dissertation. The first column presents
the bug pattern, and the second column presents the description of each
bug pattern according to the FindBugs description2. We consider as report
commit, the first commit in which Findbugs reported the bug in a code element.

Manually validate bugs. Previous research (23) mentions that bug report
classifications are unreliable. Thus, we performed a bug report manual classi-
fication to identify which bug reports actually represent bugs in the projects
of Apache Tomcat, Apache Derby, and Apache Ant. This classification was
performed in pairs by 14 researchers. Each person of the pair was responsible
for manually classify the same bug report as “bug” or “not bug”. When there
was a divergence in opinion, the pair should talk and define the final classifi-
cation of such bug. In the final analysis, we considered only bug reports that
represent bugs in such projects. We manually validated 1,477 bug reports, in
which 516 (34.94%) were classified as “bug” and 961 (65.06%) as “not bug”.
We also performed a manual validation of the bugs collected via static analy-

2http://findbugs.sourceforge.net/bugDescriptions.html

http://findbugs.sourceforge.net/bugDescriptions.html
DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 3. Research Methodology 42

Table 3.5: Bug Patterns of FindBugs
Bug Pattern Description

Malicious Code Variables or fields exposed to classes that should not be
using them

Multithreaded Thread synchronization issues

Performance Inefficient memory usage/buffer allocation, usage of non-static
classes

Security Similar to malicious code vulnerability
Correctness Apparent coding mistakes

sis. This procedure has the purpose of reducing the number of false positives
of the tool. To do that, we followed the same procedure described above for
the bug reports. We manually validated 198 bugs, in which 168 (84.85%) was
classified as “bug” and 30 (15.15%) as “not bug”.

3.6
Bug-Fix Commit and Bug-Fix Elements Detection

To identify the bug-inducing commit (described below), it is necessary
to know the bug-fix commit and the code elements involved with the fix of the
bug. This procedure is necessary only for bug reports since bugs detected via
static analysis already output the commit and the elements associated with
the fix of the identified bug. Thus, a common practice among developers is to
include the bug report number in the commit comment whenever they fix a bug
associated with it (24). In this way, to map a bug report with its fix commit, we
automatically search log messages for references to bug reports such as “bug
23442” or “fix for bug 23442” as proposed by Dallmeier and Zimmermann (25).
We ignored bug reports that we could not find the commit of the fix because,
without the fix commit, we cannot find the fixed files. Thus, these bug reports
are considered not functional (26). We consider as buggy elements, all code
elements that were modified in the fix commit. Furthermore, we discarded
from our analysis buggy elements involved in test classes.

3.7
Bug-Introducing Commit Detection

Given the bug-fix commit and the bug-fix elements previously identified,
we used the bug-introducing change identification algorithm proposed by
Śliwerski et al. (24) (the SZZ algorithm) to identify when the bug was
introduced in the project. SZZ is currently the most used algorithm for

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 3. Research Methodology 43

automatically identify fix-inducing commits (27). SZZ aims at identifying the
lines modified in a bug-fixing commit, and then it identifies the fix-inducing
change immediately before each line of the bug-fixing commit. As the original
version of SZZ may have false positives and false negatives, we have used
a combination of heuristics proposed by Kim et. al (28) and Williams and
Spacco (29). Kim et. al (28) mention two limitations of the original SZZ: (i)
not all changes are fixes, i.e., even if a file change is defined as a bug-fix by
developers, not all hunks in the change are bug-fixes; (ii) there is not enough
information in bug tracking systems, and because of this an incorrect bug-
inducing commit may be chosen. Using their approach, we can remove 38-
51% of false positives and 14% of false negatives as compared to the original
implementation of SZZ (24). SZZ outputs a list of commits related to the
introduction of the bug in the software system. For analysis purposes, we
considered only the newest commit reported by SZZ.

3.8
Changes Detection

In the studies performed in this dissertation, we considered code elements
that have changed during the software history. For that, we collect all classes
changed in each commit of each software project analyzed in this dissertation.
Thus, to view the changed files on each commit of a given project, we used
the following command from GitHub: git log –pretty="commit=%H:%ae"
–name-status3. This command returns the list of all changed files in all
commits of such project.

3.9
Final Remarks

This chapter presented the study design of the work. First, we discussed
our goals. For this purpose, we select a set of 12 open source project of GitHub
repositories. First, we detected code smells. Then, we used the Refactoring
Miner tool to detect refactoring operations over our project sample. After, we
detected bugs and identified the report commit, the introducing commit, the
fix commit, and the code elements involved with the fix of the bug. Finally,
we detected the changed files over the software project history. The next
chapter presents and discusses the results of the first study conducted in this
dissertation.

3https://git-scm.com/docs/git-log

https://git-scm.com/docs/git-log
DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



4
The Bug-Proneness of Code Refactored through Isolated
Refactoring

According to the literature (1, 3), refactored code elements are often
bug-prone. However, these studies tend to solely analyze if a refactored code
contains a bug in the same or further commits. In spite of this limited
analysis, such studies overlook the impact of different refactoring tactics on
the bug-proneness of refactored code. For instance, one could say that pure
refactorings, i.e., root-canal refactorings, would be less bug-prone than floss
refactorings since its goal is only to improve the code structural quality.
Therefore, when studying the bug-proneness of refactored code elements, the
analysis of different refactoring tactics is also important.

This chapter presents a longitudinal study focused on investigating
the bug-proneness of code refactored through isolated refactoring. First, we
perform an overall analysis by assessing the frequency of isolated refactorings
performed in code elements that are bug-prone and not bug-prone at all.
Second, we assess the frequency regarding the number of degraded code
elements that became buggy regarding being refactored or not. Third, we
measure the distance between the isolated refactoring and the bug. Finally,
we investigate the characteristics of refactorings that make the source code
the refactored code element bug-prone, i.e., refactoring types and refactoring
tactics.

Part of the study presented in this chapter was presented as a poster at
the 40th International Conference on Software Engineering (5). The remainder
of this chapter is organized as follows. Section 4.1 describes the study settings,
including the study goal and research questions. Section 4.2 presents the
results of our empirical study regarding the bug-proneness of code refactored
through isolated refactoring. Section 4.3 discusses threats to the study validity.
Section 4.4 summarizes this chapter and introduces the following chapter.

4.1
Study Settings and Procedures

General study procedures are described in Chapter 3. This section
describes the specific settings of this study aimed at understanding the bug-

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 4. The Bug-Proneness of Code Refactored through Isolated
Refactoring 45

proneness of code refactored through isolated refactorings. The remainder of
this section is organized as follows. Section 4.1.1 presents the research questions
and associated hypotheses. Section 4.1.2 presents the procedure for identifying
isolated refactorings. Section 4.1.3 presents the procedure to manually classify
refactoring tactics. Section 4.1.4 presents the procedure to measure the two
complementary properties of the bug-proneness of refactored code: frequency
(Section 4.1.4.1), and distance (Section 4.1.4.2). Finally, Section 4.1.5 presents
the procedure to manually validate the results for the distance property.

4.1.1
Research Questions

The empirical study presented in this chapter aims at evaluating the
bug-proneness of code refactored through isolated refactoring. Our study goal
is defined in Chapter 3. From our study goal, we designed the following specific
research questions (SRQs).

SRQ1. How many isolated refactorings were performed in code elements
that are bug-prone?

As our goal is to measure the bug-proneness of refactored code elements,
then we should know how many isolated refactorings were performed in code
elements that are bug-prone. Additionally, we investigate the number of code
smells in code elements touched by isolated refactorings. Hence, one could
assume that if a refactored code element had multiple code smells before
the refactoring was applied, then those code elements are more bug-prone.
We do this analysis for isolated refactorings performed in code elements that
are bug-prone and isolated refactorings performed in code elements that are
not bug-prone at all. The result of this SRQ serves as a starting point to
analyze the characteristics of refactorings that make the source code bug-prone.

SRQ2. Are refactored code elements less bug-prone than non-refactored
code elements?

As a result of SRQ1, we know how many isolated refactorings were
performed in code elements that are bug-prone. Thus, we can now perform
further investigation on refactorings performed in code elements that are bug-
prone. Then, SRQ2 aims at investigating whether refactored code elements are
less bug-prone than non-refactored code elements. For that, we analyze code
elements that contain code smells before the refactoring operation. That is,

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 4. The Bug-Proneness of Code Refactored through Isolated
Refactoring 46

such code elements tend to degrade as developers constantly apply changes
along the software maintenance. Thus, aimed at reducing the negative effects
of code structural quality degradation, developers often apply refactorings
on the degraded code elements (6). By definition, refactoring improves the
structural quality of the refactored code elements. It implies improving the
software maintenance as a whole, which means that changing the source code
becomes easier, e.g., to add new software functionalities.

Regardless the purpose of developers while refactoring code, the general
assumption is that the source code will have better structural quality. Con-
sequently, one could assume that refactoring degraded code elements make
them less bug-prone. That is because previous studies show that most changes
applied to the code elements are due to changing software functionalities,
and bugs are mostly functionality-related. However, all these assumptions
are limitedly addressed by previous studies (see Section 2.2). We address
such limitation by answering SRQ2. Thus, SRQ2 serves as a starting point to
understand to what extent we could blame refactorings for bugs. We derived
our null (H0) and alternative hypotheses (HA1) from SRQ2 as presented in
Table 4.1.

Table 4.1: Study hypotheses derived from SRQ2

Hypotheses Description

H0
There is no difference in the bug-proneness of refactored and
non-refactored code.

HA1
There is a difference in the bug-proneness of refactored and
non-refactored code.

SRQ3. How many times a degraded code element that was refactored has
to change to become buggy?

Understanding if applying refactorings to degraded code elements re-
duces the bug-proneness of code elements (SRQ2) is a valid starting point.
However, some tricky questions about the bug-proneness of refactored code
might emerge. A major question regards how close is the applied refactoring
from either the bug introduction or the bug report. As for how close, we
mean how many times a degraded code element that was refactored had to
change to become buggy. In fact, previous studies suggest that there is a
relationship between refactorings and bugs. It does not drastically differ from
our investigation with SRQ2. However, all these studies fall short in showing
that the refactoring is bug-prone. Thus, their findings might mislead devel-
opers to refactor degraded code elements. With SRQ3, we aim to understand

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 4. The Bug-Proneness of Code Refactored through Isolated
Refactoring 47

how many changes developers have to apply on a degraded code element in
order to make it buggy. Our goal is to understand how reliable is stating that
refactorings are bug-prone, as reported by previous studies. We derived our
null (H0) and alternative hypotheses (HA1) from SRQ3 as presented in Table
4.2.

Table 4.2: Study hypotheses derived from SRQ3

Hypotheses Description

H0
There is no difference in the bug-proneness regarding distance
when considering the insertion commit and report commit.

HA1
There is a difference in the bug-proneness regarding distance
when considering the insertion commit and report commit.

SRQ4. How frequent degraded code elements are bug-prone per refactor-
ing type?

By assessing how many times a degraded code element has to change
to become buggy (SRQ3), we promote a better understanding about to what
extent blaming refactorings for bugs makes sense. However, refactorings vary
per type. Recent studies provide evidence that each refactoring type has a
different effect on the code structural quality (6). Thus, one could assume that
these different refactoring types contribute differently to the bug-proneness of
refactored code elements. We designed SRQ4 for investigating such a reason-
able assumption. Our goal is to identify the refactoring types that developers
apply at most to degraded code elements. After that, we investigate the
bug-proneness of code elements that were refactored through each type. By
doing that, we can better understand if the bug-proneness of refactored code
significantly varies among different types.

SRQ5. How many times a degraded code element that was refactored has
to change to become buggy per refactoring tactic?

Similar to SRQ4, we also want to have a better understanding of how dif-
ferent refactoring tactics can impact in the bug-proneness of refactored code
elements. The refactoring tactics should be investigated since someone can
argue that the results presented in SRQ3 can be different when we consider
refactoring tactics. Since root-canal and floss refactoring have different pur-
poses, we can expect that the bug-proneness of refactored code per refactoring
tactic may differ in each one. We derived our null (H0) and alternative hy-
potheses (HA1) from SRQ5 as presented in Table 4.3.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 4. The Bug-Proneness of Code Refactored through Isolated
Refactoring 48

Table 4.3: Study hypotheses derived from SRQ5

Hypotheses Description

H0
There is no difference in the bug-proneness of refactored code
per refactoring tactic.

HA1
There is a difference in the bug-proneness of refactored code
per refactoring tactic.

4.1.2
Identification of Isolated Refactorings

As described in Section 3.4, we collect all refactorings performed in all
software projects analyzed in this study. After that, to answer the SRQs de-
signed for this study, we divide the set R of refactorings into two disjoint sets.
The first set is composed of isolated refactorings, i.e., refactorings that are not
performed in conjunction with other refactoring operations. The second set
is composed by batch refactorings, i.e., a sequence of inter-related refactoring
operations. We formally define isolated refactorings as follows.

Definition 1.
Let r be a single refactoring.
Let b = (r1, r2, ..., rn) be a sorted list of refactorings, which we call a batch
a refactoring, composed of n arbitrary refactorings.
r is an isolated refactoring if r is not in b. That is, r 6= ri ∀i = {1, .., n}.

4.1.3
Manual Classification of Refactoring Tactics

To classify the isolated refactorings into root-canal refactorings and floss
refactorings, we conducted a manual inspection of a randomly selected sample
composed of 2,119 refactorings. We manually analyzed whether the changes
performed during the refactoring do not modify the behavior. We classify
a change as floss refactoring when there are behavioral changes, such as an
addition of methods or changes in the method body that are not related to
refactoring transformations. When we did not identify behavioral changes, the
refactoring was classified as root-canal. This inspection was performed by three
researchers. Two of them are very experienced refactoring researchers. The
most experienced one solved the conflicts. As a result, we found that developers
apply root-canal refactoring in 31.5% of the cases. The confidence level for this
number is 95% with a confidence interval of 5%.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 4. The Bug-Proneness of Code Refactored through Isolated
Refactoring 49

4.1.4
Measuring the Properties of the Bug-Proneness of Refactored Code

Figure 4.1 illustrates how we evaluate the bug-proneness of refactored
code for isolated refactorings. The figure presents the timeline in terms of
commits of a software project. For each commit, we represent the key event of
such commit. For the sake of simplicity, we consider only events performed in
the same code element, in this case, the method X.

Figure 4.1: Evaluation of the bug-proneness of code refactored through isolated
refactorings

By analyzing the timeline presented in Figure 4.1, we can see that in the
first commit (represented by C1) the method X was smelly, i.e., method X
was structurally degraded. Then, two changes were performed in method X:
one change in C2, and another one in C4. After these changes, a refactoring
operation of any type was applied to the degraded code element (method X) in
C5. After being refactored, another change was performed in method X in C6.
Then, a bug was introduced in method X, although it has only be perceived
and reported by users in C9. Between the bug introduction and the bug report,
another change was performed in method X (C8). Finally, the bug was fixed in
method X in C10. Sections 4.1.4.1 and 4.1.4.2 explain how we measure the two
complementary properties, frequency and distance, for all analyses performed
in this study.

4.1.4.1
Measuring the Frequency Property

We performed different analyses regarding the frequency property. First,
to answer SRQ1, we compute how many isolated refactorings were performed
in code elements that are bug-prone. For that, let us consider the example of
Figure 4.1. A refactoring operation was performed in C5, and the refactored

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 4. The Bug-Proneness of Code Refactored through Isolated
Refactoring 50

code element had a bug in further commits. Thus, as in this example there was
just one refactoring, and this refactored code element became buggy in further
commits, then we say that 100% of the refactorings were performed in code
elements that are bug-prone. We perform this analysis by counting how many
isolated refactorings were performed in code elements that are bug-prone for
all software systems analyzed in this study. Furthermore, we count how many
isolated refactorings touched in code elements without any code smells, with a
single code smell, and with multiple code smells. We perform the latter analysis
for isolated refactorings performed in code elements that are bug-prone, and
isolated refactorings performed in code elements that are not bug-prone at all.

Second, to answer SRQ2, we measure the frequency by computing how
many degraded code elements have been refactored or not before they become
buggy. Considering the Figure 4.1, in this case, we measure the frequency
property by counting the number of buggy code elements that were refactored
in the past according to their the number of code smells on it. For instance, we
consider as buggy code elements all those elements involved with the fix of the
bug (method X, in this case). Then, we check whether this code element has
been refactored before the introduction and the report of the bug. In our case,
method X was refactored in C5. Next, we assess the number of code smells
in the refactored code. That is if it had no smell, a single smell, or multiple
smells before the refactoring operation. In the case of method X, it had only
one smell. Thus, for this example, one buggy code element was refactored and
had a single smell. We carry out this analysis for every buggy element for each
software project analyzed in this study. Finally, to answer SRQ4, we measure
how many code elements are bug-prone per refactoring type. For that, we
divide the isolated refactorings by refactoring type.

4.1.4.2
Measuring the Distance Property

We measure the distance property by considering all isolated refactorings,
per refactoring type and per refactoring tactic. For that, we count the number
of changes between the commit in which the refactoring was applied and the
commit in which the bug was either introduced or reported, by considering all
code elements involved with the fix of the bug (method X). In the example
of Figure 4.1, it was necessary only one change (performed in C6) after
the refactoring operation (C5) to introduce the bug (C7). Similarly, it was
necessary two changes (C6 and C8) after the refactoring operation (C5) to
the report of the bug (C9). Thus, we say that the distance is one and two,
respectively. We consider both events of bugs, i.e., insert and report, due to

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 4. The Bug-Proneness of Code Refactored through Isolated
Refactoring 51

the fact that a bug can be perceived and reported by developers or users after
a long time that the bug was indeed introduced in the code element. Thus, it
is important to verify if the results change by considering different events of
bugs.

4.1.5
Manual Validation of the Distance Results

To analyze if a refactored code is indeed bug-prone, we manually analyzed
25% of the cases in which the refactoring was very close to the bug. That is, we
manually analyzed 25% of the results found for the distance property in which
it was necessary few changes after the refactoring so that the code element
became buggy. For that, we first analyzed the bug report. Then, we checked
which code elements were fixed for such bug report. After, we analyzed the
commit in which the refactoring was applied, and the bug was reported. Finally,
we tried to identify any relationship between the refactored code elements and
the buggy code elements. The validation was performed by three researchers.

4.2
The Bug-Proneness of Code Refactored through Isolated Refactorings

This section presents the study results that answer the SRQs of this
study. The following subsection presents the results for each one of our specific
RQs.

4.2.1
Frequency of Isolated Refactorings Performed in Code Elements that Are
Bug-Prone

In this section, we aim to assess the number of isolated refactorings
performed in code elements that are bug-prone, by answering the following
SRQ1: How many isolated refactorings were performed in code elements that
are bug-prone?. Table 4.4 presents the results for all analyzed projects. The first
column presents the name of the software project. The second column presents
the total number of isolated refactorings per software project. The third column
presents the number of isolated refactorings performed in code elements that
are bug-prone. The fourth column presents the number of isolated refactorings
performed in code elements that are not bug-prone at all. Furthermore,
highlighted cells in the table indicate that we found a non-ignorable frequency
(more than 10%) of refactorings performed in code elements that are bug-
prone.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 4. The Bug-Proneness of Code Refactored through Isolated
Refactoring 52

Table 4.4: Frequency of isolated refactorings performed in code elements that
are bug-prone per software project

Software
project

#Isolated
refactorings

#Isolated refactorings
(bug-prone)

#Isolated refactorings
(not bug-prone)

Ant 1,276 11
(0,86%)

1,265
(99,14%)

Derby 3,093 22
(0,71%)

3,071
(99,29%)

Elasticsearch 5,597 736
(13,15%)

4,861
(86,85%)

Elaticsearch-hadoop 265 3
(1,13%)

262
(98,87%)

ExoPlayer 1,198 21
(1,75%)

1,177
(98,25%)

Fresco 564 5
(0,89%)

559
(99,11%)

Material-dialogs 78 12
(15,38%)

66
(84,62%)

Netty 2,782 31
(1,11%)

2,751
(98,89%)

Okhttp 698 47
(6,73%)

651
(93,27%)

Presto 1,526 32
(2,10%)

1,494
(97,90%)

Spring-boot 1,152 176
(15,28%)

976
(84,72%)

Tomcat 1,393 36
(2,58%)

1,357
(97,42%)

Total 21,217 1,142
(5.38%)

20,075
(94.62%)

As we can see in the table, more than 13% of the isolated refactorings
were performed in code elements that are bug-prone considering the projects
Elasticsearch, Material-dialogs, and Spring-boot. On the contrary, the other
projects have few isolated refactorings performed in code elements that are
bug-prone (varying from 0.86% to 6.73%). Overall, only 5.38% of the isolated
refactorings were performed in code elements that are bug-prone. Conversely,
most isolated refactorings (94.62%) were performed in code elements that are
not bug-prone at all. This result is interesting because, to the best of our
knowledge, none of the previous studies (1, 3) explicitly quantify the number
of refactorings performed in code elements that are bug-prone (see Section 2.2).

After analyzing the number of refactorings performed in code elements
that are bug-prone, we want to assess the number of code smells in code ele-
ments touched by these isolated refactorings. Figure 4.2 presents the frequency
of isolated refactorings performed in code elements that are bug-prone (red
bars) versus the frequency of isolated refactorings performed in code elements
that are not bug-prone at all (green bar) according to the number of code
smells in the refactored code element before the refactoring, i.e., no smell,

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 4. The Bug-Proneness of Code Refactored through Isolated
Refactoring 53

single smell or multiple smells.

Figure 4.2: Frequency of isolated refactorings according to the structure
degradation of the code elements touched by these refactorings

Our results show that 62.71% of the isolated refactorings performed in
code elements that are not bug-prone touched in code elements without any
code smell. That is, most of the refactored code elements that did not contain
any bugs in further commits were not structurally degraded. By analyzing the
isolated refactorings performed in code elements that are bug-prone, we can
see that 63.14% of them touched in code elements with either a single smell
or multiple smells. Thus, the refactoring might not have sufficed to combat
the side effects of the source code degradation and, thus, the code elements
became buggy in further commits.

To get a better understanding of the code structure degradation of the
code elements touched by isolated refactorings, we analyzed the code smell
types affecting such code elements. As a result, we found that 68% of the
isolated refactorings performed in code elements that are bug-prone touched
in code elements with smells that affect only one class (e.g., Brain Class,
Brain Method, Class Data Should Be Private, Complex Class, Data Class,
Lazy Class, Message Chain, God Class, Long Method, Long Parameter List,
Spaghetti Code, and Speculative Generality), against 78.42% of the isolated
refactorings performed in code elements that are not bug-prone. However,
many of the isolated refactorings performed in code elements that are bug-
prone (32%) touched in code elements affecting more than one class (e.g.
Dispersed Coupling, Feature Envy, Intensive Coupling, Refused Bequest, and
Shotgun Surgery) against only 21.58% of isolated refactorings performed in

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 4. The Bug-Proneness of Code Refactored through Isolated
Refactoring 54

code elements that are not bug-prone. This result suggests that isolated
refactorings performed in code elements that are bug-prone touched in code
elements affected by critical code smells, i.e., smells affecting more than one
class.

Summary for SRQ1. Only 5.38% of the isolated refactorings were
performed in code elements that are bug-prone against 94.62% of isolated
refactorings performed in code elements that are not bug-prone at all.
Additionally, 62.71% of the refactorings performed in code elements that
are not bug-prone touched in code elements without any code smell.
Similarly, 63.14% of the isolated refactorings performed in code elements
that are bug-prone touched in code elements with either a single smell
or multiple smells. This result shows that the refactoring might not have
sufficed to fully overcome the degradation in the source code, and, as a
result, bug(s) emerged in future commits.

4.2.2
Bug-Proneness of Refactored Code versus Non-Refactored Code

In this section, we aim to assess the frequency that refactored code is bug-
prone against non-refactored code. To do that, we computed the frequency by
analyzing how many buggy elements had been refactored or not according to
the number of code smells affecting such code elements before the refactoring.
Previous work (7, 8) mention that the higher the number of code smells in an
element, the higher its degradation. Thus, we consider the degradation of a
code element according to two categories as follows: (i) single smell, and (ii)
multiple smells. Thus, this section addresses SRQ2, which asks Are refactored
elements less bug-prone than non-refactored elements when such elements are
degraded?. To answer this question, we compute the frequency of degraded code
elements that have been refactored or not before they become buggy. Table
4.5 presents the results per software project. The first column presents the
software projects. The second and third columns present the frequency of code
elements (i) hosting either single or multiple smells, (ii) weren’t refactored, and
(iii) became buggy. The fourth and fifth columns show the frequency of code
elements (i) hosting either single or multiple smells, (ii) were refactored and
(iii) became buggy. Finally, the last column presents the proportion of degraded
code elements that were refactored and became buggy (summing up the values
of the fourth and fifth columns), and degraded code elements that became
buggy and weren’t refactored (summing up the values of the second and third

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 4. The Bug-Proneness of Code Refactored through Isolated
Refactoring 55

columns). By measuring the proportion, we are able to see the percentage of
degraded code elements that were refactored and became buggy. The equation
below computes such proportion. Furthermore, highlighted cells in the table
indicate that we found a non-ignorable frequency (more than 10%) for such
cases of analysis.

proportion = #degraded & refactored & buggy code
#degraded & non−refactored & buggy code

Table 4.5: Frequency of the bug-proneness of refactored code vs. non refactored
code per software project (isolated refactorings)

No Refactoring Refactoring

Projects Single smell
& Buggy

Multiple smells
& Buggy

Single smell
& Buggy

Multiple smells
& Buggy Proportion

Ant 29.63% 37.04% 0.00% 33.33% 50.00%
Derby 7.52% 91.23% 0.00% 1.25% 1.27%
Elasticsearch 39.95% 31.09% 2.55% 26.42% 40.78%
Elasticsearch-hadoop 0.00% 0.00% 0.00% 0.00% -
ExoPlayer 71.43% 0.00% 28.57% 0.00% 40.00%
Fresco 82.64% 17.36% 0.00% 0.00% 0.00%
Material-dialogs 0.00% 1.03% 0.00% 98.97% 9600.00%
Netty 60.26% 38.46% 1.28% 0.00% 1.30%
Okhttp 7.69% 80.77% 0.00% 11.54% 13.04%
Presto 32.08% 39.62% 7.55% 20.75% 39.47%
Spring-boot 17.18% 30.53% 3.05% 49.24% 109.60%
Tomcat 74.84% 24.74% 0.00% 0.42% 0.42%
Total 45.83% 33.84% 1.58% 18.75% 25.52%

As we can see in the table, most software projects have a non-ignorable
frequency of code elements that weren’t refactored, considering either single
smell or multiple smells (second and third column, respectively). Some projects
have a high frequency of code elements containing multiple code smells,
that weren’t refactored and became buggy, i.e., Derby (91.23%), and Okhttp
(80.77%). Furthermore, some projects have a higher frequency of code elements
containing a single smell, i.e., Tomcat (74.84%) and Fresco (82.64%). On
the contrary, most software projects do not have a considerable value of
frequency for code elements containing a single smell that was refactored and
became buggy. Moreover, 6 out of 12 software projects contain a non-ignorable
frequency of code elements containing multiple smells that were refactored
and became buggy. Regarding the proportion of degraded code elements that
were refactored and became buggy and degraded code elements that weren’t
refactored and became buggy, we can see that 50% of the projects presented
a non-ignorable value of proportion. Overall, only 25.52% of the degraded
code elements were refactored before becoming buggy. That is, 74.48% of the
degraded code elements weren’t refactored before becoming buggy. This result
shows that degraded and non-refactored code is more bug-prone than degraded
and refactored code.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 4. The Bug-Proneness of Code Refactored through Isolated
Refactoring 56

Figure 4.3 presents a bar graph that shows the frequency of buggy
elements that were refactored or not according to the number of code smells
affecting the code elements before the refactoring.

Figure 4.3: Frequency of the bug-proneness of refactored code vs. non-
refactored code for isolated refactorings

When analyzing the number of code smells affecting the code elements
before the refactoring regardless if a refactoring operation was applied, i.e.,
summing up the results for single smells (left side of the bar graph) and
multiple smells (right side of the bar graph), our results show that 52.59% of the
buggy code elements contain multiple smells against 47.41% that contain single
smells. This result is interesting because it shows that buggy code elements had
high code structure degradation. Furthermore, if we consider the refactoring
operation regardless the number of code smells affecting the code elements,
i.e., summing up both blue and green bars, our results suggest that 79.67% of
the buggy code elements have not been refactored before they become buggy.
That is, no refactoring operation was applied before the code element becomes
buggy in the software system. In this case, applying refactoring on smelly
elements could have avoided bugs in these elements. On the contrary, 20.33%
of the buggy elements were refactored before they become buggy.

We applied the Fisher’s test to compute the strength of the relation
between refactoring and degraded code with bugs (9). Furthermore, we used
the Odds Ratio (10) to compute the possibility of the presence or absence of a
phenomenon (i.e., refactoring) to be associated with the presence or absence
of the other phenomenon (i.e., degraded code with bugs). Considering all
projects analyzed, we found a p-value less than 0.05, and Odds Ratio equals to

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 4. The Bug-Proneness of Code Refactored through Isolated
Refactoring 57

0.2894. Thus, our results show that the possibility of a refactoring be related
to a degraded code with bugs is 0.28 if compared to non-refactoring related to
degraded code with bugs. In summary, our results lead us to reject the null
hypothesis H0 and accept the alternative hypothesis HA1.

Summary for SRQ2. 79.67% of the smelly elements that became buggy
were not previously refactored. This result shows that degraded, non-
refactored code tends to be more bug-prone than degraded and refactored
code.

4.2.3
Distance Between the Refactoring and the Bug

This section aims to analyze the bug-proneness of refactored code ele-
ments based on the property distance. After computing the distance, we an-
alyze the quartiles distribution of the data to see whether refactored code
elements are bug-prone or not. That is, if there are several changes between
the isolated refactoring and the bug, then the refactoring might have made the
code element less bug-prone. Similarly, if there are few changes between the
refactoring and the bug, then the refactoring might have made the code ele-
ment more bug-prone. The result of this analysis will allow us to answer SRQ3,
which asks How many times a degraded code element that was refactored has
to change to become buggy?.

Table 4.6 presents the results for isolated refactorings, considering the
insertion and report commits for all projects analyzed in this study. The first
column shows the considered commit of the bug (insertion or report). The
second column presents the number of times that a refactored code became
buggy. The following columns present the minimum value of distance, the
quartiles (25%, 50%, 75%), and the maximum value of distance found. We
applied the Grubb outlier test (α = 0.05), and we removed outliers for both
insertion and report commit data. Thus, these results represent a key factor
to provide confidence in the findings reported in this study.

Table 4.6: Bug-proneness in distance for isolated refactorings considering bug
reports

Bug N Min Q1 Q2 Q3 Max
Insertion 786 1.00 7.00 17.00 32.00 271.00
Report 2677 0.00 9.00 21.00 43.00 364.00

Our results for the bug report analysis show that in 75% of the times,
a code element needs at least seven changes to become buggy after being

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 4. The Bug-Proneness of Code Refactored through Isolated
Refactoring 58

refactored. In the analyzed software projects, seven changes happened in
approximately three months (considering the mode in the distance values of
Q1). That is, the refactored code element became buggy in the software systems
three months after the refactoring operation. To actually assess if refactoring
is bug-prone, we also analyzed bugs via static analysis. For that, we collected
bugs via static analysis for two software projects analyzed in this study, Apache
Tomcat e Apache Derby. The goal of analyzing the distance property for bug
reports and bugs via static analysis is to see if there is a difference in the results
considering both sources of bugs. Table 4.7 presents the results of the analysis
of bugs via static analysis.

Table 4.7: Bug-proneness in distance for isolated refactorings considering bugs
collected via static analysis

Bug N Min Q1 Q2 Q3 Max
Insertion 186 1.00 8.25 26.00 37.00 58.00

As we can see, when analyzing bugs via static analysis, a code element
needs at least nine changes to became buggy after being refactored. However,
if we consider the number of months that the refactored code took to became
buggy, it was necessary 21 months for these nine changes happen. Both
analyses of bug reports and bugs via static analysis suggest that the other
changes occurred in the period between the refactoring and the bug might be
related to the bug. In other words, the refactoring is unlikely to be bug-prone
due to the fact that lots of changes are performed in between the isolated
refactoring and the bug. We performed a manual analysis of the results of
bug reports considering distances up to the ones found in the second quartile
(Q2) (see Section 4.1.5). However, we could not find any explicit evidence of
refactorings that are bug-prone. That is, by definition, refactoring improves the
code structural quality without changing the external behavior. On the other
hand, the bug is associated with changing the expected behavior of the software
system. Thus, it is hard to find an obvious relationship between refactorings
and bugs.

To analyze whether there is any statistically significant difference between
the insertion and the report commits of bug reports, we carried out the Mann-
Whitney Wilcoxon (MWW) test, considering a significance level of 0.05. We
found a p-value < 0.05, showing that there is a statistical difference between
(i) the results of bug-proneness of refactored code when considering the bug
insertion commit and (ii) the results of bug-proneness of refactored code when
considering the bug report commit. In summary, our results lead us to reject
the null hypothesis H0 and accept the alternative hypothesis HA1.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 4. The Bug-Proneness of Code Refactored through Isolated
Refactoring 59

Previous work (1, 11) only analyze whether the refactored code contains
a bug after being refactored or not. Bavota et al. (1) show that refactorings
tend to induce bugs frequently. However, their analysis does not support the
fact that the code element could have become buggy very far from the refactor-
ing operation. In their case, the distance between the refactoring and the bug
could be even further because the authors only analyze major releases instead
of a more fine-grained analysis (commit by commit). That is, usually, between
two major releases, developers perform significant changes in the source code.
Thus, they probably missed refactorings and bugs when they followed this
procedure since refactorings and bugs might be hidden or unidentifiable when
considering only major releases. In our study, we mitigate this threat by
collecting refactorings commit by commit. Although Bavota et al. (1) mention
that they could find examples of refactorings inducing bugs between two major
releases, we could not find any example when considering the analysis commit
by commit. Our running example presented in Section 1.1 illustrates how we
could not find any cases of refactoring inducing bugs. In addition, the study
performed by Weißgerber and Diehl (11) analyzes bug reports opened within
the next five days after the refactoring operation. This analysis might not suf-
fice to show that refactored code is bug-prone, as we have demonstrated that
it takes around 3 months for bugs reports, and 21 months considering bugs
for static analysis so that the code element become buggy after the refactoring.

Summary for SRQ3. In 75% of the times that refactored code elements
are bug-prone when analyzing isolated refactorings, a code element needs
at least nine changes after isolated refactorings so that the code element
becomes buggy. As a result, refactored code elements are often not suscep-
tible to immediately contain bugs.

4.2.4
Bug-Proneness According to Refactoring Types

Given the analysis of the distance property performed in SRQ3, we want
to understand which refactoring types are applied to buggy code elements
according to the distance values. Thus, this section aims to answer SRQ4 that
asks How frequent degraded code elements is bug-prone per refactoring type?.
First, we analyze the frequency that each refactoring type is further associated
with a bug, considering bug reports. Table 4.8 shows the frequency of each
refactoring type is further associated with a bug. Refactoring types not listed
in the table did not have any value of frequency.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 4. The Bug-Proneness of Code Refactored through Isolated
Refactoring 60

Table 4.8: Frequency of each refactoring type
Refactoring Type Frequency
Extract Method 54.00%
Inline Method 25.00%
Rename Method 7.00%
Move Attribute 6.00%
Move Method 5.00%
Extract Superclass 3.00%

As we can see in the table above, Extract Method, and Inline Method are
the most frequent refactoring types associated with bugs. Previous work (1)
shows that such refactoring types are considered harmful for the system. We
could confirm it in our analysis. Thus, to get a better understanding of this
phenomenon, we analyzed how many changes a code element needs to contain
a bug after one of these most frequent refactoring types. Figure 4.4 presents
a histogram for each one of most frequent refactoring types. The first graph
corresponds to the Extract Method refactoring type, and the second graph
corresponds to the Inline Method refactoring type. The horizontal axis presents
the distance values when considering such refactoring types. The vertical axis
shows the frequency of each distance values, i.e., how many times such distance
value occurred for such refactoring type.

Figure 4.4: Distance of the most frequent refactoring types related to bugs

The graph shows that lower distance values have a higher frequency. That
is, for the Extract Method refactoring type, most bugs appear one change away
from the refactoring operation. Furthermore, distance values ranging from 2 to
5, and from 7 to 10 also have a considerable frequency. Similarly, for the Inline
Method, most bugs appear one change away from the refactoring operation.
We could confirm the results found by Bavota et al. (1). The authors state
that the Extract Method and the Inline Method refactoring types are harmful
and make the refactored code more bug-prone. As we found in our analysis,

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 4. The Bug-Proneness of Code Refactored through Isolated
Refactoring 61

few changes are necessary so that bugs appear after the application of one
of these refactoring types. Thus, we reinforce the results found by Bavota et
al. (1) from another perspective. That is, we performed a more fine-grained and
systematic analysis that allowed us to show that both properties (frequency
and distance) should be used complementary, i.e., if a phenomenon occurs very
frequently, then we should measure how close or how far a bug appears after
the application of the most frequent refactoring types. Thus, this result gives
us a hint that developers should be aware of the application of the Extract
Method and the Inline Method refactoring types.

We have also analyzed refactoring types of isolated refactorings that
never make code elements bug-prone. As a result, we found that code elements
refactored by Extract Interface, Move Class, Pull up Attribute, Pull down
Attribute, Pull up Method, Push down Method, and Rename Class are never
bug-prone. Surprisingly, this result contradicts Bavota et. al (1) since they
have found that those refactoring types are one of the most harmful, especially
refactoring types involving hierarchies (e.g., Pull up Method, and Pull down
Method). Our results show that developers should not worry when applying
these refactoring types. Furthermore, the results for Extract Interface, Push
down Attribute, and Push down Method confirm the results found by Bavota et
al. (1) when the authors mention that these refactoring types are not harmful
at all. The authors do not provide any evidence for Move Class, and Rename
Class.

Summary for SRQ4. Extract Method and Inline Method are the most
frequent refactoring types when analyzing the bug-proneness of code
refactored through isolated refactorings. Furthermore, few changes are
necessary after the application of these refactoring types so that the
refactored code become buggy. Thus, developers should be aware when
applying Extract Method and Inline Method.

4.2.5
Bug-Proneness According to Refactoring Tactics

The goal of this section is to assess the bug-proneness of refactored code
according to the refactoring tactics: root-canal and floss refactoring. Thus,
we aim to answer SRQ4. How many times a degraded code element that was
refactored has to change to become buggy per refactoring tactic? to know if
there is a difference in the results presented in SRQ3, when considering the
refactoring tactics for the analysis of bug reports. Thus, to assess SRQ4,
we will measure the property distance in the manual validated sample (see

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 4. The Bug-Proneness of Code Refactored through Isolated
Refactoring 62

Section 4.1.3). Table 4.9 and 4.10 present the results for root-canal refactoring
and floss refactoring, respectively. The first column presents the considered
commit of the bug (insertion or report). The second column presents the
number of times that a refactored code became buggy per refactoring tactic.
The following columns present the minimum value of distance, the quartiles
(25%, 50%, and 75%) represented by Q1, Q2, and Q3, respectively, and the
maximum value of distance.

Table 4.9: Bug-proneness of code refactored through root-canal refactoring
Bug N Min Q1 Q2 Q3 Max

Insertion 23 1 11.2 20 27 61
Report 74 0 7 19 42.1 87

Table 4.10: Bug-proneness of code refactored through floss refactoring
Bug N Min Q1 Q2 Q3 Max

Insertion 723 1 7 16.5 32 271
Report 2203 0 8 19 38 364

By analyzing the results of floss refactoring, we can see that up to Q2,
i.e., 50% of the times that a refactored code is bug-prone, it is necessary less
changes than root-canal refactoring so that the refactored code element became
buggy. Hence, when developers refactor with other goals, and changes are
applied in conjunction with the refactoring, then the code element is more
bug-prone than root-canal refactoring in 50% of the times. However, when
considering Q3 and the maximum value of distance, we can observe that it is
necessary more changes so that the refactored code element became buggy after
a floss refactoring than after a root-canal refactoring. Surprisingly, even when
developers have the goal to improve the code structure quality, refactored code
elements are bug-prone. Our results suggest that depending on the refactoring
tactic, the bug-proneness of refactored code differ.

To analyze whether there is any statistically significant difference be-
tween the root-canal and floss refactoring, we carried out the Mann-Whitney
Wilcoxon (MWW) test, considering a significance level of 0.05. We found a
p-value < 0.05, showing that there is a statistical difference between root-canal
and floss refactoring, when considering both insertion and report commits. In
summary, our results lead us to reject the null hypothesis H0 and accept the
alternative hypothesis HA1.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 4. The Bug-Proneness of Code Refactored through Isolated
Refactoring 63

Summary for SRQ5. In 75% of the times that a code element affected by
a floss refactoring is bug-prone, it is necessary at least eight changes after
the floss refactoring so that the code element become buggy. Surprisingly,
when considering 100% of the times that a code element affected by a
root-canal refactoring is bug-prone, it is necessary less changes after the
root-canal refactoring so that the code element become buggy compared
to floss refactoring. Thus, root-canal refactoring is at least as bug-prone
as floss refactoring.

4.3
Threats to Validity

We discuss the threats to the study validity (60), with the respective
minimizations, as follows.

Construct and Internal Validity.
The code smell types analyzed in this study might not be representative

of all the existing variety of code smells. To mitigate this threat, we selected
the most common code smell types. Furthermore, the selected code smell
types are directly related to refactoring types analyzed in this dissertation (19,
21). The analyses performed in this study are very sensitive to code smell
detection rules. Such rules are based on arbitrary thresholds. The risk is that
different thresholds can lead to results completely distinct. Therefore, choices
of thresholds can pose a threat to this study. To mitigate this risk, we used
thresholds previously validated by others researchers (14, 33, 61, 62).

The variety of refactoring types analyzed in our study may not be repre-
sentative. To mitigate this threat, we selected refactoring types that have been
widely applied and investigated by previous studies (1, 6, 19). Furthermore,
Refactoring Miner, the tool used to detect refactorings, represents a threat in
our study because it may lead to false positives. To mitigate this threat, we
choose this tool because previous study (6) has reported high precision. Fur-
thermore, we performed a manual validation to guarantee the reliability of our
results (see Section 3.4).

Regarding the refactoring tactics, we could not reach the developers to
ask their intentions (root-canal or floss) in all detected refactorings. Therefore,
we performed a manual validation to see whether the refactoring is root-canal
or floss (see Section 4.1.3). Such analysis is limited to two versions of the source
code directed related to the refactoring, not considering all commits in the
repository. Moreover, the manual analysis only considers behavior preservation

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 4. The Bug-Proneness of Code Refactored through Isolated
Refactoring 64

in refactored code elements. Another threat to validity is that we do not
consider callers as refactored elements. To mitigate this threat, we consider as
refactored code elements all those elements directly affected by a refactoring
operation.

The bug detection also represents a threat to validity. We collected bug
reports for open source repositories with the tag “bug” or “defect”. However,
bug reports might be incorrectly tagged. To minimize this threat, we per-
formed a manual validation of a sample (see Section 3.5). Furthermore, the
use of the FindBugs tool represents a threat to validity, because it may have
false positive and false negatives on identifying bugs in the source code. To
mitigate this threat, we manually validated a sample of the bugs reported
by the tool (see Section 3.5). The false positives of the SZZ heuristic may
represent a threat to internal validity. To minimize this threat, we used a
combination of improved heuristics proposed by (12) and (13).

Conclusion and External Validity.
Regarding the generalization of our findings, there are threats which

could limit our study findings of being applied in different software devel-
opment contexts. In fact, our study relies on 12 Java open source software
projects only, which may be a low number of projects for an empirical study
of this nature. We minimize possible threats to validity by analyzing software
projects from different domains, with varying sizes, and supported by active
issue tracking systems. In addition, the low number of samples may reduce the
ability to reveal patterns in the data. To mitigate we carefully conducted our
quantitative data analysis by validating the analyzed data whenever possible.
We also used well-known statistical measures, such as quartiles, which have
been used by previous study (31) in the context of code refactoring.

4.4
Final Remarks

In this chapter, we investigated the bug-proneness of code refactored
through isolated refactoring. For this purpose, we presented a longitudinal
study aimed at investigating the characteristics of refactorings that make the
source code bug-prone. For that, we assessed the two complementary properties
of the bug-proneness of refactored code, i.e., frequency and distance.

As a result, we found that the refactorings performed in code elements
that are bug-prone touched mostly in code elements with either a single
smell or multiple code smells. In addition, we found that it is necessary
at least nine changes (performed in around 3 months) after the refactoring

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 4. The Bug-Proneness of Code Refactored through Isolated
Refactoring 65

so that the refactored code element become buggy. Furthermore, our fine-
grained and systematic analysis allowed us to show that it is necessary a
considerable number of changes after the application of the most frequent
refactoring types performed in code elements that are bug-prone. Finally, our
results suggest that, surprisingly, code elements refactored through root-canal
refactoring can be also bug-prone. The results found in this study contradicts
the literature (1, 3) in many different ways. The next chapter presents and
discusses the results of the second study conducted in this dissertation.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



5
The Bug-Proneness of Code Refactored through Batch
Refactoring

Due to the diversity of purposes behind refactoring, researchers have been
trying to understand how and why developers perform refactoring (18, 35, 52).
These studies report the most common refactoring types applied by developers
(18), the typical reasons underlying refactoring types (35), and how developers
use tools that help to refactor (52). Among other findings, these studies briefly
shed light upon the existence of batch refactorings, i.e., when developers apply
a sequence of refactoring operations.

After studying the bug-proneness of code refactored through isolated
refactoring (presented in Chapter 4), there is a need to empirically investigate
the bug-proneness of code elements refactored through batch refactoring.
Previous work (1, 3) overlook the effects of batch refactorings on the bug-
proneness of refactored code elements. As refactoring might be risky as any
other change in the source code, one could say that if more refactorings
are applied to a code element, then more bug-prone the code elements
are. However, this is unknown since the literature does not explore this
phenomenon. Thus, this chapter has the goal to sweep an unexplored terrain
between batch refactorings and bugs. For that, we consider batches as one of
the characteristics of refactorings that make refactored code bug-prone. Hence,
we analyze the complementary properties of the bug-proneness of refactored
code, i.e., frequency and distance, in the context of batch refactorings.

The remainder of this chapter is organized as follows. Section 5.1 de-
scribes the study settings, including the study goal and research questions. Sec-
tion 5.2 presents the results of our empirical study regarding the bug-proneness
of code refactored through batch refactoring. Section 5.3 discusses threats to
the validity. Section 5.4 summarizes this chapter and introduces the following
chapter.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 5. The Bug-Proneness of Code Refactored through Batch Refactoring
67

5.1
Study Settings and Procedures

The common study procedures for all studies performed in this disserta-
tion is described in Chapter 3. This section describes the specific settings and
procedures of the study aimed at understanding the bug-proneness of code
refactored through batch refactoring. The remainder of this section is orga-
nized as follows. Section 5.1.1 presents the research questions, and associated
hypotheses. Section 5.1.2 describes how we identify batch refactorings. Finally,
Section 5.1.3 presents how we measure the bug-proneness of code refactored
through batch refactoring regarding the frequency and the distance properties.

5.1.1
Research Questions

The study presented in this chapter intends to investigate the bug-
proneness of code refactored through batch refactoring. From our study goal,
we designed the following specific research questions (SRQs).

SRQ6. How many batch refactorings were performed in code elements
that are bug-prone?

Our goal is to measure the bug-proneness of code refactored through
batch refactoring. Thus, it is essential to understand how many batch refac-
torings were performed in code elements that are bug-prone. As a result of
this research question, we can then perform further analysis to assess how this
phenomenon occurs.

SRQ7. Are code elements refactored through batch refactorings less bug-
prone than non-refactored code elements?

As a result of SRQ6, we know how many batch refactorings were per-
formed in code elements that are bug-prone. Thus, this research question aims
at investigating whether code elements refactored through batch refactorings
are less bug-prone than non-refactored code elements. For that, we analyze
one of the complementary properties of the bug-proneness of refactored code
elements, i.e., frequency. Similar to SRQ2, we only consider degraded code
elements, since developers often apply refactorings on degraded code ele-
ments (6). Thus, with the results of SRQ6, we will be able also to compare
the frequency property between isolated refactorings and batch refactorings.
We derived our null (H0) and alternative hypotheses (HA1) from SRQ7 as

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 5. The Bug-Proneness of Code Refactored through Batch Refactoring
68

presented in Table 5.1.

Table 5.1: Study hypotheses derived from SRQ7

Hypotheses Description

H0

There is no difference in the bug-proneness of code elements
that have undergone batch refactorings and
non-refactored code elements.

HA1

There is a difference in the bug-proneness of code elements
that have undergone batch refactorings and
non-refactored code elements.

SRQ8. Does the bug-proneness of degraded code elements decrease when
applying batch refactoring?

High levels of code degradation require the application of batch refactor-
ings. Otherwise, it might not be possible to fully eliminate the code degradation
and, therefore, reduce its bug proneness. Recent studies (18, 35, 52) suggest
that applying batch refactoring is a more recurring phenomenon that re-
searchers could expect. Due to the aforementioned assumption that every
isolated refactoring might decrease the bug-proneness of degraded code ele-
ments, one could assume the following: the more refactorings developers apply
on a degraded code element, the less bug-prone such code element becomes
compared to only one refactoring. We confirm or refute this expectation
through SRQ8 by comparing the distance values of batch refactorings versus
isolated refactorings. We derived our null (H0) and alternative hypotheses
(HA1) from SRQ8 as presented in Table 5.2.

Table 5.2: Study hypotheses derived from SRQ8

Hypotheses Description

H0
There is no difference in the bug-proneness regarding distance
when applying batch refactorings or isolated refactorings.

HA1
There is a difference in the bug-proneness regarding distance
when applying batch refactorings or isolated refactorings.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 5. The Bug-Proneness of Code Refactored through Batch Refactoring
69

5.1.2
Identification of Batch Refactorings

After collecting all refactorings performed in all analyzed software
projects (see Section 2.1.1), we need to identify batch refactorings to assess
the bug-proneness of code refactored through batch refactorings. Murphy
Hill et al. (18) mention that developers often refactor multiple pieces of
code since several code elements need to be refactored in order to perform
a complete refactoring. This result suggests that batches have more than
one refactoring operation and that they should share a code element. Fur-
thermore, the authors (18) mine CSV. As CVS does not record which file
revisions were committed in a single transaction, the authors proposed an
approach for finding revisions committed by the same developer with the
same commit message. This indicates that batches should be performed by
the same developer. Then, we developed a heuristic to identify batch refac-
torings. In this study, we define as a batch if (i) the refactorings have at
least one code element in common (18, 40); (ii) all refactorings in the batch
must have been performed by the same developer; (iii) the batch must have
more than one refactoring operation. After identifying each batch refactoring,
we sort the refactoring operations chronologically. The sorting depends if
the batch was identified in the same commit or in different commits. In the
case that we have a batch in the same commit (see batch b1 in Figure 2.1),
the order is arbitrary. When a batch is identified in different commit (see
batch b2 in Figure 2.1), we sort the refactorings according to the commit order.

Definition 2.
A batch refactoring b = [r1, r2, ..., rn] is a sequence of size n ≥ 2
refactorings ri, for 1 ≤ i ≤ n, such that:

– Order(rj) ≤ Order(rj+1), for 1 ≤ j < n, where Order(rj) is the
order, in the program commit history, of the commit that includes
rj

– ∀j(Programmer(rj) = u), for 1 ≤ j ≤ n, where Programmer(rj) is
the programmer that has performed rj and u is a specific programmer

– ∀j(Element(rj) = e), for 1 ≤ j ≤ n, where Element(rj) is the
program element affected by rj and e is a specific element

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 5. The Bug-Proneness of Code Refactored through Batch Refactoring
70

5.1.3
Measuring the Properties of the Bug-Proneness of Refactored Code

Figure 5.1 presents how we measure the bug-proneness of code refactored
through batch refactoring. The figure represents a timeline regarding the
commit history of a software project. For illustration purpose, we will only
show events that happened on method X. As we can see, a batch composed of
two refactorings happened in {C3, C5}. Furthermore, method X was smelly
in C1, a bug was introduced on it in C7, and a bug report was opened in C9.
Additionally, changes were performed in method X on C2, C4, C6, and C8.
Finally, the bug was fixed in method X in C10. Sections 5.1.4 and 5.1.5 present
how we measure the frequency and distance properties.

Figure 5.1: Evaluation of the bug-proneness of code refactored through batch
refactoring

5.1.4
Measuring the Frequency Property

To answer SRQ6, we count how many batch refactorings were performed
in code elements that are bug-prone. For that, we consider the first refactoring
that is part of the batch. We chose the first refactoring due to the fact that the
subsequent refactorings that are part of the batch could have made the code
element bug-prone. For instance, in Figure 5.1, we consider the first refactoring
of the batch, i.e., the refactoring operation performed in C3, and then we verify
whether a bug has been either introduced or reported in further commits.
Observe that if we had considered the last refactoring operation of the batch,
i.e., the refactoring operation performed in C5, we would have missed a bug
that could have been inserted and reported in C4.

To compare the frequency that code elements refactored through batch
refactorings are less bug-prone than non-refactored code elements (SRQ7), we

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 5. The Bug-Proneness of Code Refactored through Batch Refactoring
71

count the number of buggy code elements that belong to a batch refactoring
according to the number of code smells on it. For that, we look back from the
first refactoring operation part of the batch that had a bug in further commits
and count how many code smells the refactored code element had. Thus, in
Figure 5.1, method X had one code smells in C1, before the first refactoring
operation part of the batch (performed in C3).

5.1.5
Measuring the Distance Property

To measure the bug-proneness of code refactored through batch refactor-
ing considering the distance property (SRQ8), we count the number of changes
between the commit of the first refactoring part of the batch and the commit
in which the bug was either introduced or reported. That is, in Figure 5.1,
two changes were performed in method X in {C4, C6} from the first refac-
toring part of the batch (C3) to the bug introduction (C7). Furthermore, if
we consider the commit in which the bug was reported, the example shows
that three changes were performed ({C4, C6, C8}) from the commit in which
the first refactoring part of the batch was performed (C3) to the commit in
which the bug was reported (C9). Note that if we have not considered the first
refactoring part of the batch, we would have missed the change performed in
C4, which could be the one responsible for the bug occurrence.

5.2
The Bug-Proneness of Code Refactored through Batch Refactoring

This section shows the results that answer SRQ6 (Section 5.2.1), SRQ7

(Section 5.2.2), and SRQ8 (Section 5.2.3).

5.2.1
Frequency of Batch Refactorings Performed in Code Elements that Are
Bug-Prone

In this section, we assess the number of batch refactorings performed
in code elements that are bug-prone, by answering SRQ6, which asks How
many batch refactorings were performed in code elements that are bug-prone?.
Table 5.3 presents the frequency of batch refactorings performed in code
elements that are bug-prone. The first column lists the software projects
analyzed in this study. The second column presents the total number of batch
refactorings found for each software project. The third column shows the
number of batch refactorings performed in code elements that are bug-prone.
Finally, the fourth column presents the number of batch refactorings performed

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 5. The Bug-Proneness of Code Refactored through Batch Refactoring
72

in code elements that are not bug-prone at all. Furthermore, highlighted cells
in the table indicate that we found a non-ignorable frequency (more than 10%)
of batch refactorings performed in code elements that are bug-prone.

Table 5.3: Frequency of bug-prone batch refactorings
Software
Project

# Batch
Refactorings

# Batch Refactorings
with Bugs in the Future

# Batch Refactorings
without Bugs in the Future

Ant 331 2
(0.60%)

329
(99.40%)

Derby 4,407 3
(0.07%)

4,404
(99.93%)

Elasticsearch 816 72
(8.82%)

744
(91.18%)

Elasticsearch-hadoop 242 0
(0.00%)

242
(100%)

ExoPlayer 410 6
(1.46%)

404
(98.54%)

Fresco 18 1
(5.56%)

17
(94.44%)

Material-dialogs 18 6
(33.33%)

12
(66.67%)

Netty 766 12
(1.57%)

754
(98.43%)

Okhttp 66 5
(7.58%)

61
(92.42%)

Presto 250 4
(1.60%)

246
(98.40%)

Spring-boot 130 21
(16.15%)

109
(83.85%)

Tomcat 374 5
(1.34%)

369
(98.66%)

Total 7,828 137
(1.75%)

7,691
(98.25%)

The results presented in Table 5.3 show that more than 15% of the
batches performed in the projects Spring-boot and Material-dialogs were per-
formed in code elements that are bug-prone. However, in the other analyzed
projects, only a few batch refactorings were performed in code elements that
are bug-prone (varying from 0.07% to 8.82%). In the overall analysis for all
software projects, only 1.75% of the batch refactorings were performed in
code elements that are bug-prone, against 98.25% of the batch refactorings
performed in code elements that are not bug-prone at all. By comparing these
results with the ones found in SRQ1, we can see that code refactored through
isolated refactorings are more bug-prone than code refactored through batch
refactorings.

Summary for SRQ6. Our results show only 1.75% of the batch refactor-
ings were performed in code elements that are bug-prone, against 98.25%
of batch refactorings that were performed in code elements that are not

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 5. The Bug-Proneness of Code Refactored through Batch Refactoring
73

bug-prone at all.

5.2.2
Bug-Proneness of Refactored Code versus Non-Refactored Code

In this section, we aim to answer SRQ7, which asks Are code elements
refactored through batch refactorings less bug-prone than non-refactored code
elements? by assessing the frequency that code elements refactored through
batches are bug-prone against non-refactored code elements. For that, we
considered degraded code elements according to two categories: (i) single smell,
and (ii) multiple smells. Table 5.4 presents the results per software project.
The first column presents the software projects. The second and third columns
present the frequency of code elements (i) hosting either single or multiple
smells, (ii) weren’t refactored by a batch, and (iii) became buggy. The fourth
and fifth columns show the frequency of code elements (i) hosting either single
or multiple smells, (ii) were refactored by a batch and (iii) became buggy.
Finally, the last column presents the proportion of degraded code elements
that were refactored and became buggy (summing up the values of the fourth
and fifth columns), and degraded code elements that became buggy and weren’t
refactored (summing up the values of the second and third columns). By
measuring the proportion, we are able to see the percentage of degraded
code elements that were refactored and became buggy. The equation below
computes such proportion. Furthermore, highlighted cells in the table indicate
that we found a non-ignorable frequency (more than 10%) for such cases of
analysis.

proportion = #degraded & refactored & buggy code
#degraded & non−refactored & buggy code

As we can see in the table, most software projects have a non-ignorable
frequency of code elements that weren’t refactored by a batch, considering
either single smell or multiple smells (second and third column, respectively).
Some projects have a high frequency of code elements containing multiple
code smells, that weren’t refactored by a batch refactoring and became
buggy, i.e., Derby (84.07%), and Fresco (98.29%). Furthermore, some projects
have a higher frequency of code elements containing a single smell, i.e.,
Tomcat (75.00%). On the contrary, most software projects do not have a
considerable value of frequency for code elements containing a single smell
that were refactored by a batch and became buggy. Moreover, 5 out of
12 software projects contain a non-ignorable frequency of code elements
containing multiple smells that were refactored by a batch and became buggy.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 5. The Bug-Proneness of Code Refactored through Batch Refactoring
74

Table 5.4: Frequency of the bug-proneness of refactored code vs. non refactored
code per software project (batch refactorings)

No Refactoring Refactoring

Projects Single smell
& Buggy

Multiple smells
& Buggy

Single smell
& Buggy

Multiple smells
& Buggy Proportion

Ant 6.25% 71.88% 0.00% 21.88% 28.00%
Derby 14.29% 84.07% 0.00% 1.65% 1.68%
Elasticsearch 0.00% 0.00% 0.00% 0.00% -
Elasticsearch-hadoop 0.00% 0.00% 0.00% 0.00% -
ExoPlayer 0.00% 0.00% 0.00% 0.00% -
Fresco 0.00% 98.29% 1.71% 0.00% 1.74%
Material-dialogs 0.00% 100% 0.00% 00.00% 00.00%
Netty 49.30% 11.27% 2.82% 36.62% 65.12%
Okhttp 11.76% 64.71% 0.00% 23.53% 30.77%
Presto 37.50% 52.50% 0.00% 10.00% 11.11%
Spring-boot 11.92% 43.05% 0.00% 45.03% 81.93%
Tomcat 75.00% 24.56% 0.00% 0.44% 0.44%
Total 41.88% 45.87% 0.38% 11.87% 14.00%

Regarding the proportion of degraded code elements that were refactored
and became buggy, and degraded code elements that weren’t refactored and
became buggy, we can see that in 5 out of 12 software projects presented
a non-ignorable value of proportion. Overall, only 14.00% of the degraded
code elements were refactored before becoming buggy. That is, 86.00% of the
degraded code elements weren’t refactored before becoming buggy. This result
shows that degraded and non-refactored code is more bug-prone than degraded
and refactored code. Figure 5.2 presents a bar graph that shows the frequency
of buggy elements that were refactored multiple times or not according to the
number of code smells in code elements before the refactoring operation.

Figure 5.2: Frequency of the bug-proneness of refactored code vs. non-
refactored code (batch refactorings)

When analyzing the code degradation regardless the refactoring opera-
tion, i.e., summing up the results for single smells (left side of the bar graph)

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 5. The Bug-Proneness of Code Refactored through Batch Refactoring
75

and multiple smells (right side of the bar graph), our results show that 57.74%
of the buggy code elements contain multiple smells against 42.26% that con-
tain single smells before the first refactoring part of the batch. This result is
interesting because it shows that buggy code elements were highly structurally
degraded. Furthermore, if we consider the refactoring operation regardless the
code degradation, i.e., summing up both blue bars and green bars, our re-
sults suggest that 87.75% of the buggy code elements have not been refactored
before they become buggy, regardless the code degradation. That is, no refac-
toring operation was applied before the code element becomes buggy in the
software system. In this case, applying a batch refactoring on smelly elements
could have avoided bugs in these elements. On the contrary, 12.25% of the
buggy elements were refactored before they become buggy.

We applied the Fisher’s test to compute the strength of the relation
between batch refactoring and degraded code with bugs (9). Furthermore,
we used the Odds Ratio (10) to compute the possibility of the presence or
absence of a phenomenon (i.e., batch refactoring) to be associated with the
presence or absence of the other phenomenon (i.e., degraded code with bugs).
Considering all projects analyzed, we found a p-value less than 0.05, and Odds
Ratio equals to 0.6881. Thus, our results show that the possibility of a batch
refactoring be related to a degraded code with bugs is 0.68 if compared to
non-refactoring related to degraded code with bugs. In summary, our results
lead us to reject the null hypothesis H0 and accept the alternative hypothesis
HA1.

Summary for SRQ7. 87.75% of the degraded code elements that became
buggy were not previously refactored by a batch refactoring. This result
shows that degraded, non-refactored code elements tend to be more bug-
prone than degraded, refactored code elements.

5.2.3
Distance Between the Refactoring and the Bug

In this section, we aim at analyzing the bug-proneness of code elements
refactored through batch refactorings regarding the distance property. The
result will allow us to answer SRQ8. Does the bug-proneness of degraded code
elements decrease when applying batch refactoring?. Table 5.5 shows the results
of distance values for the insertion and report commit of the bug. We applied
the Grubb outlier test (α = 0.05), and we removed outliers for both insertion
and report commit data. Thus, the results found to represent a key factor to
provide confidence in the results reported in this work.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 5. The Bug-Proneness of Code Refactored through Batch Refactoring
76

Table 5.5: Bug-proneness in distance for batch refactorings
Bug N Min Q1 Q2 Q3 Max

Insertion 111 1.00 7.50 29.00 52.50 123.00
Report 120 0.00 8.00 27.00 51.25 191.00

As we can see in the table, in 75% of the times, a degraded code
element needs at least eight changes to became buggy after a batch refactoring.
One could say that if the code element is structurally degraded, and more
refactorings are applied to it (batches), then the code is more bug-prone than
when a code element is refactored only once. However, we surprisingly found
that if more refactorings are applied to a degraded code element, then it is less
bug-prone.

Similar to the analysis of isolated refactorings (Section 4.2.3), it took
three months so that the refactored code element became buggy. If we compare
the bug-proneness of code refactored through isolated refactorings and code
refactored through batch refactorings, we can see that the distance starts to
vary from Q2. For instance, 50% of times that isolated refactorings are bug-
prone, it is necessary up to 21 changes so that the refactored code element
become buggy. However, when considering batch refactoring, it is necessary up
to 29 changes so that the refactored code element becomes buggy. This result
suggests that applying batches might contribute to make the code element
less bug-prone. That is, when applying batch refactorings, it is necessary
more changes so that the code element become buggy if compared to isolated
refactorings.

To analyze whether there is any statistically significant difference be-
tween the bug-proneness of code refactored through isolated refactoring and
the bug-proneness of code refactored through batch refactoring, we carried
out the Mann-Whitney Wilcoxon (MWW) test, considering a significance
level of 0.05. Considering the insertion commit, we found a p-value < 0.05,
showing that there is a statistical difference between the bug-proneness of
code refactored through isolated refactoring and the bug-proneness of code
refactored through batch refactoring. However, when considering the report
commit, we found a p-value > 0.05. That is, there is no statistical difference
between the bug-proneness of code refactored through isolated refactoring and
batch refactoring for the report commit. In summary, our results lead us to
reject the null hypothesis H0 and accept the alternative hypothesis HA1.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 5. The Bug-Proneness of Code Refactored through Batch Refactoring
77

Summary for SRQ8. In 75% of the times that code elements refactored
through batch refactorings are bug-prone, a code element needs least eight
changes after a batch refactoring so that the code element becomes buggy.
However, when comparing isolated and batch refactoring, in 75% of the
times that refactored code elements are bug-prone, it is necessary more
changes so that the code element becomes buggy after a batch refactoring
than after an isolated refactoring.

5.3
Threats to Validity

In this section, we discuss the threats to the study validity (60), with the
respective minimizations. This study has some common threats to validity to
the first study conducted in this dissertation (see Chapter 4). The mitigation
of such threats was the same as the previous study. We describe them as follows.

Construct and Internal Validity.
The code smell types analyzed in this study might not be representative.

Furthermore, the selected code smell types are directly related to refactoring
types analyzed in this dissertation (10, 21). Also, the analyses performed in
this study are very sensitive to code smell detection rules. Such rules are based
on arbitrary thresholds. Therefore, choices of thresholds are threats to this
study. The mitigation of such threats was the same as the previous study
(see Chapter 4). That is, we selected the most common code smell types.
Furthermore, we used thresholds previously validated by others researchers (14,
33, 61, 62).

The Refactoring Miner tool used to detect refactorings represents a
threat in our study because it may lead to false positives. We mitigate this
threat similar to the study performed in Chapter 4. That is, we choose this
tool because previous study (6) has reported high precision. Furthermore, we
performed a manual validation to guarantee the reliability of our results (see
Section 3.4). Also, to measure the distance property, we take into account
the first refactoring part of the batch. This is a treat to validity since the
chosen refactoring will influence the results of the bug-proneness of code
refactored through batch refactoring. To mitigate this threat, we also measured
the distance property from the last refactoring that is part of the batch. We
could not find any significant difference in the results of the distance property
considering the first and the last refactoring part of the batch.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 5. The Bug-Proneness of Code Refactored through Batch Refactoring
78

The bug detection also represents a threat to validity. Furthermore,
the use of the FindBugs tool represents a threat to validity, because it may
have false positive and false negatives on identifying bugs in the source code.
Moreover, the false positives of the SZZ heuristic may represent a threat to
internal validity. We mitigate this threat similar to the study performed in
Chapter 4. That is, we performed a manual validation of a sample of bug
reports collected in this study (see Section 3.5). We also manually validated a
sample of the bugs reported by Findbugs (see Section 3.5). Furthermore, we
used a combination of improved heuristics of SZZ proposed by (12) and (13).

Similar to Chapter 4, another threat to validity is the changes detected
in our study. We identify changes at the file level. It might be the case that the
change is not an actual change in the source code. It might be the case that
the developer just commented something in the source code, or did a line break.

Conclusion and External Validity.
Similar to Chapter 4, there are threats which could limit our study

findings of being applied in different software development contexts. Our study
relies on 12 Java open source software projects only, which may be a low
number of projects for an empirical study of this nature. We minimize possible
threats to validity by analyzing software projects from different domains, with
varying sizes, and supported by active issue tracking systems. In addition, the
low number of samples may reduce the ability to reveal patterns in the data. To
mitigate we carefully conducted our quantitative data analysis by validating
the analyzed data whenever possible. We also used well-known statistical
measures, such as quartiles, which have been used by previous study (31) in
the context of software refactoring.

5.4
Final Remarks

In this chapter, we investigated the bug-proneness of code refactored
through batch refactoring. We presented a study aimed at investigating an
unexplored terrain of the bug-proneness of code refactored through batch
refactoring. For that, we assessed batches as one of the characteristics of
refactorings that make the source code bug-prone. Additionally, we assessed the
complementary properties of the bug-proneness of refactored code. We found
that only 1.75% of the batch refactorings were performed in code elements
that became buggy. By comparing these results with the ones found in the
previous study, we can see that code refactored through isolated refactorings
are more bug-prone than code refactored through batch refactoring. Finally,

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 5. The Bug-Proneness of Code Refactored through Batch Refactoring
79

we found that most of the times that code elements refactored through batches
are bug-prone, it is necessary more changes so that the code element becomes
buggy compared to isolated refactorings. The aforementioned findings were not
previously found in the literature.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



6
Conclusion and Future Work

Previous studies (1, 3) neither investigate the bug-proneness of refactored
code in depth, nor the influence of refactoring tactics on bugs. In fact, these
studies (1, 3) provided limited evidence that refactored code is often susceptible
to contain bugs. That is, these studies (1, 3) only assess whether refactored
code elements contain a bug in further commits. This analysis might not suffice
to blame refactorings for bugs since the refactored code element could have
become buggy very far from the refactoring.

To address the aforementioned limitations, this dissertation proposes a
more fine-grained and systematic evaluation of the bug-proneness of refactored
code. Hence, we performed two longitudinal multi-project studies to assess the
bug-proneness of refactored code. The first study concerns assessing the bug-
proneness of code refactored through isolated refactorings. Furthermore, the
second study concerns assessing the bug-proneness of code refactored through
batch refactorings. Besides conducting two longitudinal multi-project studies,
we also proposed two complementary properties to assess the bug-proneness
of refactored, namely frequency and distance. These properties allowed us
to assess the different characteristics of refactorings that make refactored
code elements bug-prone, i.e., refactoring types, refactoring tactics, isolated
refactorings, and batch refactorings. Our studies involved 12 Java open source
projects, 39,750 refactorings, including 21,217 isolated refactorings and 7,828
batch refactorings, 2,119 refactorings manually validated by refactoring tactic,
6,051 bug reports, and 49,250 bugs via static analysis.

We answer our general research question, which asks What are the
characteristics of refactorings that make code elements bug-prone?, by relying
on the findings of our studies as follows. First, we found that only 5.38%
of isolated refactorings are bug-prone against 94.62% of isolated refactorings
that are not bug-prone at all. Additionally, 62.71% of the isolated refactorings
that are not bug-prone touched in code elements without any code smell.
Similarly, 63.14% of the isolated refactorings that are bug-prone touched in
code elements with either a single smell or multiple smells. This result shows
that the refactoring might not have sufficed to fully overcome the degradation
in the source code, and bug(s) emerged in future commits.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 6. Conclusion and Future Work 81

Second, 79.67% of the degraded code elements that became buggy were
not previously refactored. This result shows that degraded, non-refactored code
elements tend to be more bug-prone than degraded, refactored code elements.
Third, in 75% of the times that refactored code elements are bug-prone when
analyzing isolated refactorings, it is necessary at least seven changes after
isolated refactorings so that the code element become buggy. Additionally,
these seven changes were performed in approximately three months between
the isolated refactoring and the bug. As a result, refactored code elements are
often not susceptible to immediately contain bugs. We have manually analyzed
25% of the bug-prone refactored code elements, and we could not find any
explicit case of bug-prone refactored code, as previous work suggests (1). On
the contrary, the changes performed between isolated refactorings and bugs
are more likely to be bug-prone.

Fourth, we found that the Extract Method and Inline Method are
the most frequent refactoring types when analyzing the bug-proneness of
code refactored through isolated refactorings. Furthermore, few changes are
necessary after the application of these refactoring types so that the refactored
code become buggy. Thus, developers should be aware when applying Extract
Method and Inline Method in order to do not make refactored code elements
bug-prone.

Fifth, in 75% of the times that a code element affected by a floss
refactoring is bug-prone, it is necessary at least eight changes after the
floss refactoring so that the code element become buggy. Surprisingly, when
considering 100% of the times that a code element affected by a root-
canal refactoring is bug-prone, it is necessarily fewer changes after the root-
canal refactoring so that the code element become buggy compared to floss
refactoring. Thus, root-canal refactoring is at least as bug-prone as floss
refactoring.

Sixth, we found that 1.75% of the batch refactorings are bug-prone
against 98.25% of batch refactorings that are not bug-prone at all. Seventh,
87.75% of the degraded code elements that became buggy were not previously
refactored by a batch refactoring. This result shows that degraded and non-
refactored code elements tend to be more bug-prone than degraded and
refactored code elements.

Finally, in 75% of the times that refactored code elements are bug-prone
when analyzing batch refactorings, it is necessary at least to eight changes
after a batch refactoring so that the code element become buggy. However,
when comparing isolated and batch refactoring, in 75% of the times that
refactored code elements are bug-prone, it is necessary more changes so that

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 6. Conclusion and Future Work 82

the code element become buggy after a batch refactoring than after an isolated
refactoring.

In conclusion, the conducted empirical evaluation demystify the literature
results, by showing that refactored code is not often susceptible to contain
bugs. In fact, if we had only analyzed if a refactored code contains a bug
in further commits, as previous studies have done, we would confirm their
results. However, by considering the distance property, we were able to see
that a refactored code element is changed many times so that this code
element become buggy. Our results allowed us to identify characteristics and
make recommendations to developers, as follows. We conclude that an isolated
refactoring applied to degraded code elements tend not to suffice to reduce
their bug-proneness. This observation leads us to our first recommendation.

Recommendation 1. Developers should apply complementary refactor-
ings to fully remove the code degradation and do not make refactored code
elements bug-prone.

In addition, we observe that surprisingly, root-canal refactoring is at
least as bug-prone as floss refactoring. This observation leads us to our second
recommendation.

Recommendation 2. Developers should be aware of not making the
refactored code bug-prone even when applying root-canal.

Furthermore, we observe that batch refactoring tends to postpone bugs
in refactored code elements. This observation leads us to our third recommen-
dation.

Recommendation 3. Batches can be recommended to reduce the bug-
proneness of refactored code.

Moreover, we observe that bugs appear very close to the refactoring
operation when the Extract Method and Inline Method refactoring types are
applied. This observation leads us to our fourth recommendation.

Recommendation 4. Developers should be aware when applying Ex-
tract Method, and Inline Method refactoring types since code elements
refactored by these refactoring types are often susceptible to contain bugs
immediately.

Finally, we observe that the distance property indeed provide a means to
measure the bug-proneness. This observation leads us to our fifth recommen-
dation.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Chapter 6. Conclusion and Future Work 83

Recommendation 5. A recommender system should take into account
the distance property when warning developers about the bug-proneness
of refactored code.

As future work, we intend to assess the bug-proneness of regular changes,
e.g., line additions. After that, we can compare the bug-proneness of refactored
code against the bug-proneness of code elements that had regular changes. This
analysis will allow us to see if other types of changes make the source code
bug-prone. Furthermore, it is interesting to assess the bug-proneness of refac-
tored code in proprietary software systems. Our studies focused only on the
analysis of popular open source projects, which may have different structural
degradation, different types of bugs and refactorings as compared to propri-
etary software systems. Finally, we intend to recommend practices to motivate
software developers to refactor and improve state-of-the-art refactoring tools.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Bibliography

[1] BAVOTA, G.; DE CARLUCCIO, B.; DE LUCIA, A.; DI PENTA, M.;
OLIVETO, R. ; STROLLO, O.. When does a refactoring induce bugs?
an empirical study. In: 12TH SCAM, p. 104–113, 2012.

[2] WOHLIN, C.; RUNESON, P.; HÖST, M.; OHLSSON, M. C.; REGNELL, B.
; WESSLÉN, A.. Experimentation in software engineering. Springer
Science & Business Media, 2012.

[3] WEIßGERBER, P.; DIEHL, S.. Are refactorings less error-prone than
other changes? In: 3RD MSR, p. 112–118, 2006.

[5] FERREIRA, I.; FERNANDES, E.; CEDRIM, D.; UCHÔA, A.; BIBIANO, A. C.;
GARCIA, A.; CORREIA, J. L.; SANTOS, F.; NUNES, G.; BARBOSA, C.;
FONSECA, B. ; DE MELLO, R.. The buggy side of code refactoring:
Understanding the relationship between refactorings and bugs.
International Conference on Software Engineering, 2018.

[6] CEDRIM, D.; GARCIA, A.; MONGIOVI, M.; GHEYI, R.; SOUSA, L.;
DE MELLO, R.; FONSECA, B.; RIBEIRO, M. ; CHÁVEZ, A.. Understand-
ing the impact of refactoring on smells: A longitudinal study of
23 software projects. In: 11TH FSE, p. 465–475, 2017.

[7] FERNANDES, E.; VALE, G.; SOUSA, L.; FIGUEIREDO, E.; GARCIA, A. ;
LEE, J.. No code anomaly is an island. In: 16TH ICSR, p. 48–64, 2017.

[8] OIZUMI, W.; GARCIA, A.; DA SILVA SOUSA, L.; CAFEO, B. ; ZHAO,
Y.. Code anomalies flock together: Exploring code anomaly
agglomerations for locating design problems. In: 38TH ICSE, p.
440–451, 2016.

[9] FISHER, R.. On the interpretation of χ 2 from contingency tables,
and the calculation of p. J. Royal Stat. Soc., 85(1):87–94, 1922.

[10] CORNFIELD, J.. A method of estimating comparative rates from
clinical data. applications to cancer of the lung, breast, and
cervix. J. Nat. Cancer Inst., 11(6):1269–1275, 1951.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Bibliography 85

[11] WEIßGERBER, P.; DIEHL, S.. Are refactorings less error-prone than
other changes? In: 3RD MSR, p. 112–118, 2006.

[12] KIM, S.; ZIMMERMANN, T.; PAN, K.; JAMES JR, E. ; OTHERS. Auto-
matic identification of bug-introducing changes. In: 21ST ASE, p.
81–90, 2006.

[13] WILLIAMS, C.; SPACCO, J.. Szz revisited: verifying when changes
induce fixes. In: 8TH DEFECTS, p. 32–36, 2008.

[14] LANZA, M.; MARINESCU, R.. Object-oriented metrics in practice.
Springer Science & Business Media, 2007.

[15] ARCOVERDE, R.; MACIA, I.; GARCIA, A. ; VON STAA, A.. Automati-
cally detecting architecturally-relevant code anomalies. In: 3RD
RSSE, p. 90–91, 2012.

[16] LANZA, M.; MARINESCU, R.. Object-oriented metrics in practice.
Springer Science & Business Media, 2007.

[17] MACIA, I.; ARCOVERDE, R.; GARCIA, A.; CHAVEZ, C. ; VON STAA, A..
On the relevance of code anomalies for identifying architecture
degradation symptoms. In: 16TH CSMR, p. 277–286, 2012.

[18] MURPHY-HILL, E.; PARNIN, C. ; BLACK, A. P.. How we refactor,
and how we know it. In: 31ST INTERNATIONAL CONFERENCE ON
SOFTWARE ENGINEERING (ICSE), p. 287–297, 2009.

[19] FOWLER, M.. Refactoring. Addison-Wesley Professional, 1999.

[20] TSANTALIS, N.; GUANA, V.; STROULIA, E. ; HINDLE, A.. A multi-
dimensional empirical study on refactoring activity. In: 13TH
CONFERENCE OF THE CENTER FOR ADVANCED STUDIES ON COL-
LABORATIVE RESEARCH (CASCON), p. 132–146, 2013.

[21] MACIA, I.; ARCOVERDE, R.; GARCIA, A.; CHAVEZ, C. ; VON STAA, A..
On the relevance of code anomalies for identifying architecture
degradation symptoms. In: CSMR12, p. 277–286, March 2012.

[22] GRUBBS, F.. Procedures for detecting outlying observations in
samples. Technometrics, 11(1):1–21, 1969.

[23] HERZIG, K.; JUST, S. ; ZELLER, A.. It’s not a bug, it’s a feature: how
misclassification impacts bug prediction. In: 35TH INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING (ICSE), p. 392–401, 2013.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Bibliography 86

[24] ŚLIWERSKI, J.; ZIMMERMANN, T. ; ZELLER, A.. When do changes
induce fixes? In: ACM SIGSOFT SOFTWARE ENGINEERING NOTES
(SEN), volumen 30, p. 1–5, 2005.

[25] DALLMEIER, V.; ZIMMERMANN, T.. Extraction of bug localization
benchmarks from history. In: 22ND INTERNATIONAL CONFERENCE
ON AUTOMATED SOFTWARE ENGINEERING (ASE), p. 433–436, 2007.

[26] YE, X.; BUNESCU, R. ; LIU, C.. Learning to rank relevant files for
bug reports using domain knowledge. In: 22ND FOUNDATIONS OF
SOFTWARE ENGINEERING (FSE), p. 689–699, 2014.

[27] DA COSTA, D. A.; MCINTOSH, S.; SHANG, W.; KULESZA, U.; COELHO,
R. ; HASSAN, A. E.. A framework for evaluating the results of
the szz approach for identifying bug-introducing changes. IEEE
Transactions on Software Engineering (TSE), 43(7):641–657, 2017.

[28] KIM, S.; ZIMMERMANN, T.; PAN, K.; JAMES JR, E. ; OTHERS. Auto-
matic identification of bug-introducing changes. In: 21ST INTER-
NATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING
(ASE), p. 81–90, 2006.

[29] WILLIAMS, C.; SPACCO, J.. Szz revisited: verifying when changes
induce fixes. In: 8TH WORKSHOP ON DEFECTS IN LARGE SOFTWARE
SYSTEMS (DEFECTS), p. 32–36, 2008.

[31] CHAVEZ, A.; FERREIRA, I.; FERNANDES, E.; CEDRIM, D. ; GARCIA, A..
How does refactoring affect internal quality attributes? In: 31ST
BRAZILIAN SYMPOSIUM ON SOFTWARE ENGINEERING (SBES), p. 1–
10, 2017.

[32] KIM, S.; ERNST, M. D.. Which warnings should i fix first? In:
PROCEEDINGS OF THE THE 6TH JOINT MEETING OF THE EUROPEAN
SOFTWARE ENGINEERING CONFERENCE AND THE ACM SIGSOFT
SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING,
p. 45–54. ACM, 2007.

[33] BAVOTA, G.; DE LUCIA, A.; DI PENTA, M.; OLIVETO, R. ; PALOMBA,
F.. An experimental investigation on the innate relationship
between quality and refactoring. J. Syst. Softw (JSS), 107:1–14, 2015.

[34] KIM, M.; ZIMMERMANN, T. ; NAGAPPAN, N.. A field study of
refactoring challenges and benefits. In: 20TH FSE, p. 50, 2012.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Bibliography 87

[35] SILVA, D.; TSANTALIS, N. ; VALENTE, M. T.. Why we refactor?
confessions of github contributors. In: 24TH FSE, p. 858–870, 2016.

[38] BOURQUIN, F.; KELLER, R.. High-impact refactoring based on
architecture violations. In: 11TH CSMR, p. 149–158, 2007.

[39] KIM, S.; ZIMMERMANN, T.; PAN, K.; JAMES JR, E. ; OTHERS. Auto-
matic identification of bug-introducing changes. In: 21ST ASE, p.
81–90, 2006.

[40] KIM, M.; ZIMMERMANN, T. ; NAGAPPAN, N.. An empirical study of
refactoring challenges and benefits at microsoft. IEEE Trans. Softw.
Eng. (TSE), 40(7):633–649, 2014.

[41] RATZINGER, J.; SIGMUND, T. ; GALL, H. C.. On the relation of
refactorings and software defect prediction. In: 5TH MSR, p. 35–38,
2008.

[42] LAMKANFI, A.; DEMEYER, S.; GIGER, E. ; GOETHALS, B.. Predicting
the severity of a reported bug. In: 7TH MSR, p. 1–10, 2010.

[43] KHOMH, F.; DI PENTA, M. ; GUEHENEUC, Y.-G.. An exploratory
study of the impact of code smells on software change-proneness.
In: 16TH WCRE, p. 75–84, 2009.

[44] D’AMBROS, M.; BACCHELLI, A. ; LANZA, M.. On the impact of design
flaws on software defects. In: 10TH QSIC, p. 23–31, 2010.

[45] KHOMH, F.; DI PENTA, M.; GUÉHÉNEUC, Y.-G. ; ANTONIOL, G.. An
exploratory study of the impact of antipatterns on class change-
and fault-proneness. Emp. Softw. Eng. (ESE), 17(3):243–275, 2012.

[46] RAHMAN, M.; ROY, C.. On the relationships between stability and
bug-proneness of code clones: An empirical study. In: 17TH SCAM,
p. 131–140, 2017.

[48] WU, R.; ZHANG, H.; KIM, S. ; CHEUNG, S.-C.. Relink: recovering links
between bugs and changes. In: 11TH FOUNDATIONS OF SOFTWARE
ENGINEERING (FSE), p. 15–25, 2011.

[50] ANTONIOL, G.. Requiem for software evolution research: A few
steps toward the creative age. In: 9TH IWPSE CO-LOCATED WITH
THE 6TH ESEC/FSE, p. 1–3, 2007.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Bibliography 88

[51] GÖRG, C.; WEIßGERBER, P.. Error detection by refactoring recon-
struction. In: ACM SIGSOFT SOFTW. ENG. NOTES (SEN), volumen 30,
p. 1–5, 2005.

[52] MURPHY, G. C.; KERSTEN, M. ; FINDLATER, L.. How are java
software developers using the elipse ide? IEEE Software, 23(4):76–83,
July 2006.

[56] MURPHY-HILL, E.; BLACK, A. P.. Refactoring tools: Fitness for
purpose. IEEE software, 25(5), 2008.

[57] KIM, M.; ZIMMERMANN, T. ; NAGAPPAN, N.. A field study of
refactoring challenges and benefits. In: PROCEEDINGS OF THE ACM
SIGSOFT 20TH INTERNATIONAL SYMPOSIUM ON THE FOUNDATIONS
OF SOFTWARE ENGINEERING, p. 50. ACM, 2012.

[58] LAMKANFI, A.; DEMEYER, S.; GIGER, E. ; GOETHALS, B.. Predicting
the severity of a reported bug. In: MINING SOFTWARE REPOSITO-
RIES (MSR), 2010 7TH IEEE WORKING CONFERENCE ON, p. 1–10. IEEE,
2010.

[59] ZHANG, S.; ZHAO, J.. On identifying bug patterns in aspect-
oriented programs. In: COMPUTER SOFTWARE AND APPLICATIONS
CONFERENCE, 2007. COMPSAC 2007. 31ST ANNUAL INTERNATIONAL,
volumen 1, p. 431–438. IEEE, 2007.

[60] WOHLIN, C.; RUNESON, P.; HÖST, M.; OHLSSON, M. C.; REGNELL, B.
; WESSLÉN, A.. Experimentation in software engineering. Springer
Science & Business Media, 2012.

[61] VALE, G.; FERNANDES, E. ; FIGUEIREDO, E.. On the proposal and
evaluation of a benchmark-based threshold derivation method.
Software Quality Journal, p. 1–32, 2018.

[62] OLIVEIRA, P.; VALENTE, M. T. ; LIMA, F. P.. Extracting relative
thresholds for source code metrics. In: SOFTWARE MAINTENANCE,
REENGINEERING AND REVERSE ENGINEERING (CSMR-WCRE), 2014
SOFTWARE EVOLUTION WEEK-IEEE CONFERENCE ON, p. 254–263.
IEEE, 2014.

[63] BETTENBURG, N.; JUST, S.; SCHRÖTER, A.; WEISS, C.; PREMRAJ, R. ;
ZIMMERMANN, T.. What makes a good bug report? In: PROCEED-
INGS OF THE 16TH ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON
FOUNDATIONS OF SOFTWARE ENGINEERING, p. 308–318. ACM, 2008.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



Bibliography 89

[64] AYEWAH, N.; HOVEMEYER, D.; MORGENTHALER, J.; PENIX, J. ; PUGH,
W.. Using static analysis to find bugs. IEEE Software, 25(5), 2008.

[65] SHEN, H.; FANG, J. ; ZHAO, J.. Efindbugs: Effective error ranking
for findbugs. In: 4TH INTERNATIONAL CONFERENCE ON SOFTWARE
TESTING, VERIFICATION AND VALIDATION (ICST), p. 299–308, 2011.

[66] TSANTALIS, N.; MANSOURI, M.; ESHKEVARI, L. M.; MAZINANIAN, D.
; DIG, D.. Accurate and efficient refactoring detection in commit
history. In: IEEE ICSE, volumen 2018, 2018.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA



A
Published Papers

Ferreira, I., Fernandes, E., Cedrim, D., Uchôa, A., Bibiano, A.C., Gar-
cia, A., Correia, J.L., Santos, F., Nunes, G., Barbosa, C. and Fonseca, B.,
2018, May. The buggy side of code refactoring: understanding the relation-
ship between refactorings and bugs. In Proceedings of the 40th International
Conference on Software Engineering: Companion Proceeedings (pp. 406-407).
ACM.

Chávez, A., Ferreira, I., Fernandes, E., Cedrim, D. and Garcia, A., 2017,
September. How does refactoring affect internal quality attributes?: A multi-
project study. In Proceedings of the 31st Brazilian Symposium on Software
Engineering (pp. 74-83). ACM.

Garnier, M., Ferreira, I. and Garcia, A., 2017.On the influence of program
constructs on bug localization effectiveness: A study of 20 C# projects. Journal
of Software Engineering Research and Development, 5(1), p.6.

DBD
PUC-Rio - Certificação Digital Nº 1621790/CA


	Assessing the Bug-Proneness of Refactored Code: Longitudinal Multi-Project Studies
	Resumo
	Table of contents
	Introduction
	The Bug-Proneness of Refactored Code: A Motivating Example
	Problem Statement
	Studies on Refactorings and Bugs
	Proposed Approach and Evaluation
	The Bug-Proneness of Code Refactored through Isolated Refactoring
	The Bug-Proneness of Code Refactored through Batch Refactoring

	Contributions
	Dissertation Outline

	Background and Related Work
	Basic Concepts
	Code Degradation and Code Refactoring
	Bugs and Bug-Proneness of Refactored Code

	Literature Review
	Studies on Code Degradation and Bugs
	Studies on Refactorings and Bugs

	Final Remarks

	Research Methodology
	Research Goal
	Software Projects Selection
	Code Smell Detection
	Refactoring Detection and Manual Validation
	Bug Detection and Manual Validation
	Bug-Fix Commit and Bug-Fix Elements Detection
	Bug-Introducing Commit Detection
	Changes Detection
	Final Remarks

	The Bug-Proneness of Code Refactored through Isolated Refactoring
	Study Settings and Procedures
	Research Questions
	Identification of Isolated Refactorings
	Manual Classification of Refactoring Tactics
	Measuring the Properties of the Bug-Proneness of Refactored Code
	Measuring the Frequency Property
	Measuring the Distance Property

	Manual Validation of the Distance Results

	The Bug-Proneness of Code Refactored through Isolated Refactorings
	Frequency of Isolated Refactorings Performed in Code Elements that Are Bug-Prone
	Bug-Proneness of Refactored Code versus Non-Refactored Code
	Distance Between the Refactoring and the Bug
	Bug-Proneness According to Refactoring Types
	Bug-Proneness According to Refactoring Tactics

	Threats to Validity
	Final Remarks

	The Bug-Proneness of Code Refactored through Batch Refactoring
	Study Settings and Procedures
	Research Questions
	Identification of Batch Refactorings
	Measuring the Properties of the Bug-Proneness of Refactored Code
	Measuring the Frequency Property
	Measuring the Distance Property

	The Bug-Proneness of Code Refactored through Batch Refactoring
	Frequency of Batch Refactorings Performed in Code Elements that Are Bug-Prone
	Bug-Proneness of Refactored Code versus Non-Refactored Code
	Distance Between the Refactoring and the Bug

	Threats to Validity
	Final Remarks

	Conclusion and Future Work
	Bibliography
	Published Papers



